請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65806
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 洪惠敏(HUI-MING HUNG) | |
dc.contributor.author | Wei-Ting Lin | en |
dc.contributor.author | 林偉婷 | zh_TW |
dc.date.accessioned | 2021-06-17T00:12:30Z | - |
dc.date.available | 2012-07-18 | |
dc.date.copyright | 2012-07-18 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-07-11 | |
dc.identifier.citation | Albrecht, B. A. (1989). 'Aerosols, Cloud Microphysics, and Fractional Cloudiness.' Science 245(4923): 1227-1230.
Ally, M. R., S. L. Clegg, et al. (2001). 'Activities and osmotic coefficients of tropospheric aerosols: (NH4)(2)SO4(aq) and NaCl(aq).' Journal of Chemical Thermodynamics 33(8): 905-915. Cass, G. R., L. A. Hughes, et al. (2000). 'The chemical composition of atmospheric ultrafine particles.' Philosophical Transactions of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences 358(1775): 2581-2592. Chang, S. C., C. C. K. Chou, et al. (2010). 'Temporal characteristics from continuous measurements of PM2.5 and speciation at the Taipei Aerosol Supersite from 2002 to 2008.' Atmospheric Environment 44(8): 1088-1096. Charlson, R. J. and M. J. Pilat (1969). 'Climate: The Influence of Aerosols.' Journal of Applied Meteorology 8: 4. Chen, J. P. (1999). 'Particle nucleation by recondensation in combustion exhausts.' Geophysical Research Letters 26(15): 2403-2406. Chirico, R., A. S. H. Prevot, et al. (2011). 'Aerosol and trace gas vehicle emission factors measured in a tunnel using an Aerosol Mass Spectrometer and other on-line instrumentation.' Atmospheric Environment 45(13): 2182-2192. Chou, C. C. K., S. H. Huang, et al. (2005). 'Size-segregated characterization of atmospheric aerosols in Taipei during Asian outflow episodes.' Atmospheric Research 75(1-2): 89-109. Corrigan, C. E. and T. Novakov (1999). 'Cloud condensation nucleus activity of organic compounds: a laboratory study.' Atmospheric Environment 33(17): 2661-2668. Deng, Z. Z., C. S. Zhao, et al. (2011). 'Size-resolved and bulk activation properties of aerosols in the North China Plain.' Atmospheric Chemistry and Physics 11(8): 3835-3846. Dusek, U., G. P. Frank, et al. (2006). 'Size matters more than chemistry for cloud-nucleating ability of aerosol particles.' Science 312(5778): 1375-1378. Fitzgera.Jw (1974). 'Effect of Aerosol Composition on Cloud Droplet Size Distribution - Numerical Study.' Journal of the Atmospheric Sciences 31(5): 1358-1367. Gerber, H. E., W. A. Hoppel, et al. (1977). 'Experimental Verification of the Theoretical Relationship Between Size and Critical Supersaturation of Salt Nuclei.' Journal of Atmospheric Sciences 34(11): 6. Hameri, K., M. Vakeva, et al. (2000). 'Hygroscopic growth of ultrafine ammonium sulphate aerosol measured using an ultrafine tandem differential mobility analyzer.' Journal of Geophysical Research-Atmospheres 105(D17): 22231-22242. Hegg, D. A., L. F. Radke, et al. (1991). 'Measurements of Aitken Nuclei and Cloud Condensation Nuclei in the Marine Atmosphere and Their Relation to the Dms-Cloud-Climate Hypothesis.' Journal of Geophysical Research-Atmospheres 96(D10): 18727-18733. Hegg, D. A., L. F. Radke, et al. (1992). 'Measurements of Aitken Nuclei and Cloud Condensation Nuclei in the Marine Atmosphere and Their Relation to the Dms-Cloud-Climate Hypothesis - Reply.' Journal of Geophysical Research-Atmospheres 97(D7): 7659-7660. Heintzenberg, J. (1989). 'Fine particles in the global troposphere A review.' Tellus Series B-Chemical and Physical Meteorology 41(2): 149-160. Houghton, J. T., Y. Ding, et al. (2001). 'Climate Change 2001: The Scientific Basis.' Cambridge University Press. Hussein, T., K. A. Hameri, et al. (2005). 'Modal structure and spatial-temporal variations of urban and suburban aerosols in Helsinki - Finland.' Atmospheric Environment 39(9): 1655-1668. Ketzel, M., P. Wahlin, et al. (2003). 'Particle and trace gas emission factors under urban driving conditions in Copenhagen based on street and roof-level observations.' Atmospheric Environment 37(20): 2735-2749. Kumar, P. P., K. Broekhuizen, et al. (2003). 'Organic acids as cloud condensation nuclei: Laboratory studies of highly soluble and insoluble species.' Atmospheric Chemistry and Physics 3: 509-520. Kuwata, M., Y. Kondo, et al. (2008). 'Cloud condensation nuclei activity at Jeju Island, Korea in spring 2005.' Atmospheric Chemistry and Physics 8(11): 2933-2948. Lohmann, U. and J. Feichter (2005). 'Global indirect aerosol effects: a review.' Atmospheric Chemistry and Physics 5: 715-737. Morawska, L., S. Thomas, et al. (1998). 'Comprehensive characterization of aerosols in a subtropical urban atmosphere: Particle size distribution and correlation with gaseous pollutants.' Atmospheric Environment 32(14-15): 2467-2478. Petters, M. D. and S. M. Kreidenweis (2007). 'A single parameter representation of hygroscopic growth and cloud condensation nucleus activity.' Atmospheric Chemistry and Physics 7(8): 1961-1971. Pruppacher, H. R. and J. D. Klett (1997). 'Microphysics of Clouds and Precipitation.' Kluwer Academic Publishers: 976. Roberts, G. C. and A. Nenes (2005). 'A continuous-flow streamwise thermal-gradient CCN chamber for atmospheric measurements.' Aerosol Science and Technology 39(3): 206-221. Seinfeld, J. H. and S. N. Pandis (1998). 'Atmospheric chemistry and physics: from air pollution to climate change.' Wiley-Interscience: 1326. Seinfeld, J. H. and S. N. Pandis (2006). 'Atmospheric chemistry and physics: from air pollution to climate change.' Wiley-Interscience. Tuch, T., A. Mirme, et al. (2000). 'Comparison of twoparticle-size spectrometers for ambient aerosol measurements.' Atmospheric Environment 34(1): 11. Twomey, S. (1959). 'The nuclei of natural cloud formation part II: The supersaturation in natural clouds and the variation of cloud droplet concentration.' Pure and Applied Geophysics 43: 7. Twomey, S. (1974). 'Pollution and Planetary Albedo.' Atmospheric Environment 8(12): 1251-1256. Twomey, S. and T. A. Wojciechowski (1969). 'Observations of the Geographical Variation of Cloud Nuclei.' Journal of the Atmospheric Sciences 26(4): 4. Warner, J. (1968). 'A reduction in rainfall associated with smoke from sugar-cane fires—an inadvertent weather modification?' Journal of Applied Meteorology 7: 5. Whitby, G. T. and B. Cantrell (1976). 'Fine Particles in international conference on environmental sensing and assessment, Las Vegas.' Institute of Electrical and Electronic Engineers. Wittig, A. E., S. Takahama, et al. (2004). 'Semi-continuous PM2.5 inorganic composition measurements during the Pittsburgh air quality study.' Atmospheric Environment 38(20): 3201-3213. Yau, M. K. and R. R. Rogers (1989). 'A Short Course in Cloud Physics.' Butterworth-Heinemann. Yum, S. S., G. Roberts, et al. (2007). 'Submicron aerosol size distributions and cloud condensation nuclei concentrations measured at Gosan, Korea, during the Atmospheric brown clouds - East Asian Regional Experiment 2005.' Journal of Geophysical Research-Atmospheres 112(D22). Zhu, Y. F., W. C. Hinds, et al. (2002). 'Concentration and size distribution of ultrafine particles near a major highway.' Journal of the Air & Waste Management Association 52(9): 1032-1042. 中央氣象局 (2004). '地面氣象測報作業規範.' 交通部中央氣象局. 宋鎮宇 (2000). '台灣地區大氣氣膠特性之研究 --- 高雄及台北都會區氣膠特性與散光係數.' 國立中央大學環境工程研究所碩士論文. 張順欽 (2006). '台北市空氣品質近十年來變動型態及其顯現的意義.' 國立中央大學環境工程研究所碩士論文. 楊炳隆 (2009). '不同地域雲凝結核微物理特性之探討.' 國立中央大學大氣物理究所碩士論文. 王之群 (2006). '台北都會區近三年連續監測及事件日氣膠特性.' 國立中央大學環境工程研究所碩士論文. 蔡春進, 黃政雄, et al. (2008). '環保署超級測站監測研究計畫回顧與建議.' 行政院環境保護署. 蔡邦國 (2002). '不同空氣源次微米氣溶膠活化能力之探討.' 國立中央大學大氣物理研究所碩士論文. 陳邦瑋 (2006). '從台北都會區細氣膠特性評估PM1及PM2.5對環境影響的顯著性.' 國立中央大學環境工程研究所碩士論文. 黃公度 (2005). '引擎排放對氣膠粒徑譜之影響.' 國立台灣大學大氣科學系碩士論文. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65806 | - |
dc.description.abstract | 氣膠的物理化學特性在大氣系統中扮演十分重要的角色,其特性會影響雲凝結核的形成,更進一步可改變地球的輻射收支平衡。在本研究中,為了研究都市氣膠活化為雲凝結核之影響,於2010年10月15日至11月01日期間在台北地區進行觀測。觀測期間,雲凝結核數量濃度主要是利用連續氣流式雲凝結核計數器在過飽度0.1至1%之範圍進行監測,凝結核的數量濃度則是以凝結核計數器量測。
由觀測資料顯示,凝結核數量濃度(NCN)與氣態汙染物有很好的相關性,表示台北的氣膠主要是人為來源所貢獻,像是廚房油煙以及機動車等排放。NCN範圍在 2000-50000 個/cm3,且在研究期間NCN有明顯的日夜變化,是因為白天受到本地汙染物的排放導致有較高值的發生。在過飽和度0.1至1%時,雲凝結核數量濃度(NCCN)為 500-7000 個/cm3,且NCCN會受到大氣中NCN變化之影響。 在本研究中,由氣膠粒徑分布以及量測的凝結核(CN)與雲凝結核(CCN)資料可推估氣膠成為雲凝結核之最小粒徑(Dss),並進一步探討CCN的特性。在風速較大的條件下,平均的Dss及吸濕性參數(κ)分別為60 - 220 nm和0.05 - 0.15;風速較弱時,平均的Dss及κ分別為90 - 250 nm和0.01 - 0.1。結果說明,在風速強的條件下可稀釋本地的汙染物及傳送外來的老化氣膠,使得大氣氣膠具有較多的水溶性物質並較易形成雲凝結核。然而,κ值也顯示在風速較弱的情況時有較明顯的日夜循環,可能是因為人為活動影響晚上的氧化過程。因此,相較於本地所排放的初始氣膠,老化氣膠會傾向有較高的κ值,也就是較易成為雲凝結核。 | zh_TW |
dc.description.abstract | The physical chemical properties of aerosol particles play a significant role in atmospheric system by affecting cloud condensation nuclei (CCN) activity and further changing radiative energy budgets on the Earth. In this study, how the urban ambient aerosols affecting the CCN activity was investigated over the period of 15 October to 01 November in Taipei, Taiwan. The CCN concentration were monitored using a continuous flow cloud condensation nuclei counter (CCNc, DMT) at supersaturation (SS) ranging from 0.1% to 1% and the condensation nuclei (CN) concentration were measured using a condensation particles counter (CPC, TSI).
The in-situ observation shows that the strong correlation between the CN number concentration (NCN) vs. gas pollutants and suggested that the Taipei ambient aerosols are mainly contributed by anthropogenic sources such as cooking and vehicle emission. The NCN is ranged from 2000 to 50000 particles / cm3 and show a significant diurnal variation due to the local emission leads to higher NCN at daytime during this study. The CCN number concentration (NCCN) is ranged from 5000 to 7000 particles / cm3 at 0.1-1.0% supersaturation(SS) and is strongly dependent on NCN. In this study, with the particle size distribution and measured CN and CCN data, the required minimum particle diameter (Dss) acting as CCN was estimated and further investigated the CCN properties. For the strong wind condition, the average value of Dss is 60 to 220 nm (at 0.1-1.0% SS) and hygroscopicity parameter (κ) ~ 0.05 to 0.15. During the weak wind event, the average value of Dss is 90 to 250 nm (at 0.1-1.0% SS) and κ ~ 0.01 to 0.1, respectively. The results suggest that ambient aerosols have more hygroscopic species fraction and easily form to CCN possibly due to the dilution of freshly local emission by the inflow wind containing long range transported aged aerosols during the strong wind condition. However, the κ values also show a significant diurnal cycle as the wind speed was weak possibly due to the continued night oxidation process with less significantly interference caused by human activities. The aged particles tend to have higher κ values as compared to the freshly emitted local aerosols. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T00:12:30Z (GMT). No. of bitstreams: 1 ntu-101-R98229012-1.pdf: 4326584 bytes, checksum: 5650bc0324d375b431087a45ce3b181b (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 致謝 ……….……………………………………………………………..I
摘要 ……….……………………………………………………………..II Abstract ….……………………………………………………………...III 目錄 ……..…………………………………………………………...…..V 表目錄 …..…………………………………………………………….VIII 圖目錄 ………………………………………………………………......IX 第一章 前言 …………………………………………………………….1 1.1 研究動機 ……………………………………………………….1 1.2 研究目的 ……………………………………………………….2 第二章 文獻回顧 ..……………………………………………………...3 2.1 氣膠來源與特性 ……………………………………………….3 2.2 都市氣膠 …….………………………………………………....4 2.3 雲凝結核之特性 ……………………………………………….5 第三章 研究方法 ……………………………………………………….6 3.1 台大校總區觀測點 …………………………………………….6 3.1.1觀測地點 ………………………………………………....6 3.1.2實驗配置與設備…………………………………………..7 3.2 環保署監測站 ………………………………………………….10 3.2.1測站地點 …………………………………………………10 3.2.2監測儀器原理 ……………………………………………11 3.3 數據處理 ……………………………………………………….13 3.3.1雲凝結核活化率 ………………………………………....13 3.3.2活化粒徑 ………………………………………………....14 3.3.3臨界粒徑 ………………………………………………....14 第四章 結果與討論 ……………………………………………………16 4.1 觀測期間之環境背景與天氣概述 …………………………….16 4.2 環保署監測站之化學成份資料分析 ………………………….17 4.3 凝結核(CN)粒徑分布與數量濃度變化之分析 ……………….19 4.4 雲凝結核(CCN)數量濃度與活化率變化之分析 ……………..20 4.5 雲凝結核(CCN)特性之分析 …………………………………..21 4.5.1活化粒徑之分析 ………………………………………….21 4.5.2吸濕性參數(κ)分析 ………………………………………24 4.5.3雲凝結核微物理參數之分析 ……………………………25 第五章 結論與未來展望 ……………………………………………….27 5.1 結論 …………………………………………………………….27 5.2 未來展望 ……………………………………………………….28 參考文獻 ………………………………………………………………...29 附表 ……………………………………………………………………...35 附圖 ……………………………………………………………………...40 | |
dc.language.iso | zh-TW | |
dc.title | 都市氣膠成為雲凝結核之特性探討 | zh_TW |
dc.title | A study of the cloud condensation nuclei (CCN) activity for urban ambient aerosols | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳正平,周崇光,林博雄 | |
dc.subject.keyword | 都市,氣膠,雲凝結核,活化,吸濕性, | zh_TW |
dc.subject.keyword | urban,aerosol,cloud condensation nuclei,activity,hygroscopic, | en |
dc.relation.page | 57 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-07-11 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 大氣科學研究所 | zh_TW |
顯示於系所單位: | 大氣科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 4.23 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。