Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 國際企業學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65785
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor任立中
dc.contributor.authorSeong-mi Inen
dc.contributor.author印城美zh_TW
dc.date.accessioned2021-06-17T00:11:43Z-
dc.date.available2022-07-11
dc.date.copyright2012-07-18
dc.date.issued2012
dc.date.submitted2012-07-12
dc.identifier.citation1. Anderson, C. (2008). The long tail: Why the future of business is selling less of more
2. Anderson, Robert. & Stang, Daniel B. (2000). Customer Relationship Management
3. Berry, Michael J. A. & Linoff, Gordon S. (2011). Data mining techniques: for marketing, sales, and customer support.
4. Berson, Alex., Smith, Stephen. & Thearling, Kurt. (2000). Buiding data mining application for CRM. McGraw Hill.
5. Birant, Derya. (2011). Data Mining Using RFM Analysis.
6. Blattberg, R. C., Kim, Byung-Do. and Neslin, S. A. (2008). Database marketing: Analyzing and managing customers. Springer, New York.
7. Buckinx and Van den Poel (2005)
8. Buckinx, W., & Van den Poel, D. (2005). Customer base analysis: partial defection of behaviourally loyal clients in a non contractual FMCG retail setting. European Journal of Operational Research, 164 (1), 252-268.
9. Chan, Chu Chai Henry. (2008). Intelligent value-based customer segmentation method for campaign management: A case study of automobile retailer.
10. Chen, M.C., Chiub, A.L. & Chang, H.H. (2005), Mining changes in customer behavior in retail marketing. Expert System with Applications, Volume 28, Issue 4, pp.773-781
11. Cheng, Ching-hsue. & Chen, You-Shyang. (2009). Classifying the segmentation of customer of customer value via RFM model and RS theory.
12. Hsieh, Nan-Chen. (2004). An integrated data mining and behavioral scoring model for analyzing bank customers. Expert Systems with Applications,NO 27, pp.623-633
13. Hwang, Hyunseok., Jung, Taesoo. & Suh, Euiho. (2004). An LTV model andcustomer segmentation based on customer value: a case study on the wireless telecommunication industry. Expert Systems with Applications, No 26, pp. 181-188
14. Kim, J., Suh, E. and Hwang, H. (2003). A model for evaluating the effectiveness of CRM using the balanced scorecard, Journal of Interactive Marketing, Vol.17 No 2, pp. 5-19.
15. Li, Li-Hua., Lee, Fu-Ming. & Liu, Wan-Jing. (2006). The timely product recommendation based on RFM method.
16. Linden, Greg., Smith, Brent. & York, Jeremy. (2003). Amazon.com Recommendations Item-to-Item Collaborative Filtering. IEEE INTERNET COMPUTING
17. Ling, Xu,. Li, Song. & Jie, li. (2010). CRM Customer Value Based On Data Mining.
18. Liu, Chaohua. (2008). Customer Segmentation and Evaluation Based On RFM, Cross-selling and Customer Loyalty
19. Liu, Duen-Ren., Lai, Chin-Hui. & Lee, Wang-Jung. (2009). A hybrid of sequential rules and collaborative filtering for product recommendation.
20. MacQueen, J. B. (1967). Some methods for classification and analysis of multivariate observations. Proceedings of the Fifth Symposium on Math, Statistics, and Probability. Berkeley, CA: University of California Press.
21. Madani, Samira. (2009). Mining Changes in Customer Purchasing Behavior- a Data Mining Approach.
22. Marcus, C. (1998). A practical yet meaningful approach to customer segmentation. Journal of Consumer Marketing, Volume 15, issue 5, pp.494–504.
23. Miglautsch , John. (2000). Thoughts on RFM Scoring. The Journal of Database Marketing
24. Newell, F. (1997). The new rules of marketing: How to use one-to-one relationship marketing to be the leader in your industry. New York: McGraw-Hills Companies Inc.
25. Parvatiyar, Atul. & Sheth, Jagdish N. (2001). Customer Relationship Management: Emerging Practice, Process, and Discipline.
26. Pine, B. Joseph. (1993). Mass Customization. Harvard Business School Press. Boston, Massachusetts
27. Schafer, J. Ben., Konstan, Joseph. & Riedl, John. (1999). Recommender Systems in E-Commerce. In Proceedings of ACM E-Commerce 1999 conference
28. Shaw, Robert. (1991). Computer Aided Marketing & Selling Butterworth Heinemann.
29. Shen, Chia-Cheng. & Chuang, Huan-Ming. (2008). A study on the applications of data mining techniques to enhance customer lifetime value.
30. Shin, H. W. & Sohn, S.Y. (2004). Segmentation of stock trading customers according to potential value. Expert Systems with Applications, Vol 27 No 1, pp. 27-33
31. Suh, ji-hae (2002), A personalized Recommender based on Collaborative filtering and Association rule mining.
32. Sun, Lingfang. & Zhang, jing. (2010). Electronic recommendation mechanism based on RFM model and collaborative filtering
33. Tabaei, Zahra. & Fathian, Mohammad. (2011). Product Recommendation Based on Customer Lifetime Value—An Electronic Retailing Case Study.
34. Tan, Pang-Ning., Steinbach, Michael. & Kumar, Vipin. (2006). Introduction to Data Mining.
35. Teng, Ya-Yun. (2007). Customer concentration analysis in internet database marketing
36. Wagsta, Kiri., Cardie, Claire., Schroedl, Stefan. & Rogers, Seth. (2001). Constrained K-means Clustering with Background Knowledge.
37. Wu, J. & Lin, Z. (2005). Research on customer segmentation model by clustering. ACM International Conference Proceeding Series, 113.
38. Zdanis, Pete. (2011). The 80/20 Rule, And What It Means To You. Independent USANA Associates
39. Web site : http://www.amazon.com/
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65785-
dc.description.abstract客戶關係管理(CRM)作為一種行銷理念,已提供了瞭解客戶需求和推論客戶傾向趨勢的基礎。但是,大多數企業在制定長期正向的客戶關係管理策略時,仍存有困難。 為了預測客戶行為的變化,並提供顧客導向的服務,本研究提出了基於RFM分析和協作性過濾的CRM策略。
首先,以RFM 方法和K-means方法來衡量客戶的忠誠度,收集有類似RFM加值的顧客成為群組。本研究定義了8種群組的顧客,並將這些群組 與實際資料比較,進而評估RFM值是否有助於預測客戶的購買行為。 結果顯示,RFM策略,有助於預測下次採購並且知道誰是忠誠度高的顧客。使用RFM分析,市場行銷人員可以按照RFM群組針對每個族群的進行忠誠度行銷活動。
其次,要提高顧客的滿意度,本研究提出了基於協同過濾的推薦方法。 這個推薦系統是有效的技術,它藉著給客戶推薦正確的產品,主要可以增加利潤。 本研究以兩段推薦程序方式來進行,第一頁推薦和第二推薦。 而且為了比較第一段的推薦方法,本研究提出的客戶可能採購項目類別推薦和A-線上電子商業採用的最佳暢銷產品推薦方法兩者都納入評估。 實驗結果顯示,研究提出的推薦和暢銷推薦結合的方法效果最好。因為產品的Level會影響推薦系統的效率。 從第二段推薦評估的結果,類別推薦時,TOP 6方法獲得最好的結果;產品推薦時,TOP3方法獲得最好的結果。
zh_TW
dc.description.abstractCustomer relationship management as a marketing idea has provided understanding of the customer’s needs and delivery the philosophy of customer orientation. However, most companies have difficulty in customer relationship management strategies to develop long-term and positive relationship with customers. To predict change in customer behavior and provide customer-driven service, this study has proposed CRM strategies based on RFM analysis and collaborative filtering.
First, the RFM method, Recency(R), Frequency(F) and Monetary(M), and K-means method were used to measure customers Loyalty and cluster customers into groups with similar RFM values. The 8 segments of customer were defined and were compared with real word data for evaluating whether RFM value helps to predict customer’s purchasing behavior. The result shows that RFM strategy helps marketers to predict next purchase and know who has strong loyalty. Using this analysis, marketer can plan each of loyalty programs depending on RFM groups.
Second, to enhance the customer satisfaction, the recommendation method based on collaborative filtering has been proposed. The recommendation system is powerful technology mainly to promote items for increasing profit by recommending right products to customers. In this study, two-step recommendation process was conducted, first page recommendation and second recommendation. The proposed recommendation providing items and categories which customers are likely to purchase and the best selling recommendation system A-online shopping mall adopts, were evaluated in first page recommendation. The experimental results demonstrate that the combined method, proposed recommendation for item level and best selling recommendation for category level, performs better than the existing recommendation because the efficiency of recommendation is affected by the level of the taxonomy. From the result of second recommendation experiment, the recommendation of category has best performance under TOP 6 and the recommendation of item has best performance under TOP 3.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:11:43Z (GMT). No. of bitstreams: 1
ntu-101-R99724069-1.pdf: 1474135 bytes, checksum: 6087bc014e356db60552dd0f6b5a1f79 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsContents
謝 詞 I
中文摘要 II
Abstract III
Contents V
List of Tables VII
List of Figures IX
List of Equations X
I. Introduction 1
1.1 Background 2
1.2 Research Objectives 3
1.3 Research outline 4
1.4 Research Procedure 5
II. Literature Review 6
2.1 Customer Relationship Management (CRM) 7
2.1.1 Definitions of CRM 7
2.1.2 CRM objectives and activities 9
2.1.3 CRM and Data mining 10
2.2 Customer concentration issue 12
2.2.1 80/20 Rule 12
2.3 Recommendation system 13
2.3.1 Definition of recommendation system 13
2.3.2 Recommendation system examples 14
III. Research Methodology 18
3.1 Data collection and description 19
3.2 RFM analysis 20
3.2.1 RFM definition 20
3.2.2. Customer segmentation and RFM evaluation 22
3.3 K – means algorithm 23
3.4 Recommendation methods 24
3.4.1 Collaborative Filtering 24
3.4.2 Personalized web page 26
3.5 Evaluation Metrics 29
IV. Experiments 31
4.1 Data collection and description 32
4.1.1 Source of data 32
4.1.2 Descriptive statistics 32
4.2 Experimental Steps / Research framework 34
4.2.1 Data preprocessing 35
4.2.2 Segments based on RFM 37
4.2.3 Cluster customer value by K-means algorithm 40
4.2.4 Product Recommendation 42
4.3 Evaluation 47
4.3.1 RFM analysis 47
4.3.2 First page recommendation 48
4.3.3 Second recommendation 61
V. Conclusions 65
5.1 Discussion 66
5.2 Contribution 67
5.3 Limitation 67
5.4 Further study 68
References 69
Appendix 73
dc.language.isoen
dc.subject客戶關係管理zh_TW
dc.subjectRFMzh_TW
dc.subject協作性過濾zh_TW
dc.subjectK means algorithmzh_TW
dc.subject推薦系統zh_TW
dc.subjectCRMen
dc.subjectRFMen
dc.subjectK means algorithmen
dc.subjectCollaborative Filteringen
dc.subjectRecommendation Systemen
dc.title探討在RFM分析與協作性過濾架構下之顧客關係管理策略-以電子商務為例zh_TW
dc.titleCRM strategies based on RFM analysis and Collaborative Filtering: An Empirical Study on E-commerceen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee周建亨,陳靜怡
dc.subject.keyword客戶關係管理,RFM,協作性過濾,K means algorithm,推薦系統,zh_TW
dc.subject.keywordCRM,RFM,Collaborative Filtering,K means algorithm,Recommendation System,en
dc.relation.page74
dc.rights.note有償授權
dc.date.accepted2012-07-12
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept國際企業學研究所zh_TW
顯示於系所單位:國際企業學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
1.44 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved