請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65785
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 任立中 | |
dc.contributor.author | Seong-mi In | en |
dc.contributor.author | 印城美 | zh_TW |
dc.date.accessioned | 2021-06-17T00:11:43Z | - |
dc.date.available | 2022-07-11 | |
dc.date.copyright | 2012-07-18 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-07-12 | |
dc.identifier.citation | 1. Anderson, C. (2008). The long tail: Why the future of business is selling less of more
2. Anderson, Robert. & Stang, Daniel B. (2000). Customer Relationship Management 3. Berry, Michael J. A. & Linoff, Gordon S. (2011). Data mining techniques: for marketing, sales, and customer support. 4. Berson, Alex., Smith, Stephen. & Thearling, Kurt. (2000). Buiding data mining application for CRM. McGraw Hill. 5. Birant, Derya. (2011). Data Mining Using RFM Analysis. 6. Blattberg, R. C., Kim, Byung-Do. and Neslin, S. A. (2008). Database marketing: Analyzing and managing customers. Springer, New York. 7. Buckinx and Van den Poel (2005) 8. Buckinx, W., & Van den Poel, D. (2005). Customer base analysis: partial defection of behaviourally loyal clients in a non contractual FMCG retail setting. European Journal of Operational Research, 164 (1), 252-268. 9. Chan, Chu Chai Henry. (2008). Intelligent value-based customer segmentation method for campaign management: A case study of automobile retailer. 10. Chen, M.C., Chiub, A.L. & Chang, H.H. (2005), Mining changes in customer behavior in retail marketing. Expert System with Applications, Volume 28, Issue 4, pp.773-781 11. Cheng, Ching-hsue. & Chen, You-Shyang. (2009). Classifying the segmentation of customer of customer value via RFM model and RS theory. 12. Hsieh, Nan-Chen. (2004). An integrated data mining and behavioral scoring model for analyzing bank customers. Expert Systems with Applications,NO 27, pp.623-633 13. Hwang, Hyunseok., Jung, Taesoo. & Suh, Euiho. (2004). An LTV model andcustomer segmentation based on customer value: a case study on the wireless telecommunication industry. Expert Systems with Applications, No 26, pp. 181-188 14. Kim, J., Suh, E. and Hwang, H. (2003). A model for evaluating the effectiveness of CRM using the balanced scorecard, Journal of Interactive Marketing, Vol.17 No 2, pp. 5-19. 15. Li, Li-Hua., Lee, Fu-Ming. & Liu, Wan-Jing. (2006). The timely product recommendation based on RFM method. 16. Linden, Greg., Smith, Brent. & York, Jeremy. (2003). Amazon.com Recommendations Item-to-Item Collaborative Filtering. IEEE INTERNET COMPUTING 17. Ling, Xu,. Li, Song. & Jie, li. (2010). CRM Customer Value Based On Data Mining. 18. Liu, Chaohua. (2008). Customer Segmentation and Evaluation Based On RFM, Cross-selling and Customer Loyalty 19. Liu, Duen-Ren., Lai, Chin-Hui. & Lee, Wang-Jung. (2009). A hybrid of sequential rules and collaborative filtering for product recommendation. 20. MacQueen, J. B. (1967). Some methods for classification and analysis of multivariate observations. Proceedings of the Fifth Symposium on Math, Statistics, and Probability. Berkeley, CA: University of California Press. 21. Madani, Samira. (2009). Mining Changes in Customer Purchasing Behavior- a Data Mining Approach. 22. Marcus, C. (1998). A practical yet meaningful approach to customer segmentation. Journal of Consumer Marketing, Volume 15, issue 5, pp.494–504. 23. Miglautsch , John. (2000). Thoughts on RFM Scoring. The Journal of Database Marketing 24. Newell, F. (1997). The new rules of marketing: How to use one-to-one relationship marketing to be the leader in your industry. New York: McGraw-Hills Companies Inc. 25. Parvatiyar, Atul. & Sheth, Jagdish N. (2001). Customer Relationship Management: Emerging Practice, Process, and Discipline. 26. Pine, B. Joseph. (1993). Mass Customization. Harvard Business School Press. Boston, Massachusetts 27. Schafer, J. Ben., Konstan, Joseph. & Riedl, John. (1999). Recommender Systems in E-Commerce. In Proceedings of ACM E-Commerce 1999 conference 28. Shaw, Robert. (1991). Computer Aided Marketing & Selling Butterworth Heinemann. 29. Shen, Chia-Cheng. & Chuang, Huan-Ming. (2008). A study on the applications of data mining techniques to enhance customer lifetime value. 30. Shin, H. W. & Sohn, S.Y. (2004). Segmentation of stock trading customers according to potential value. Expert Systems with Applications, Vol 27 No 1, pp. 27-33 31. Suh, ji-hae (2002), A personalized Recommender based on Collaborative filtering and Association rule mining. 32. Sun, Lingfang. & Zhang, jing. (2010). Electronic recommendation mechanism based on RFM model and collaborative filtering 33. Tabaei, Zahra. & Fathian, Mohammad. (2011). Product Recommendation Based on Customer Lifetime Value—An Electronic Retailing Case Study. 34. Tan, Pang-Ning., Steinbach, Michael. & Kumar, Vipin. (2006). Introduction to Data Mining. 35. Teng, Ya-Yun. (2007). Customer concentration analysis in internet database marketing 36. Wagsta, Kiri., Cardie, Claire., Schroedl, Stefan. & Rogers, Seth. (2001). Constrained K-means Clustering with Background Knowledge. 37. Wu, J. & Lin, Z. (2005). Research on customer segmentation model by clustering. ACM International Conference Proceeding Series, 113. 38. Zdanis, Pete. (2011). The 80/20 Rule, And What It Means To You. Independent USANA Associates 39. Web site : http://www.amazon.com/ | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65785 | - |
dc.description.abstract | 客戶關係管理(CRM)作為一種行銷理念,已提供了瞭解客戶需求和推論客戶傾向趨勢的基礎。但是,大多數企業在制定長期正向的客戶關係管理策略時,仍存有困難。 為了預測客戶行為的變化,並提供顧客導向的服務,本研究提出了基於RFM分析和協作性過濾的CRM策略。
首先,以RFM 方法和K-means方法來衡量客戶的忠誠度,收集有類似RFM加值的顧客成為群組。本研究定義了8種群組的顧客,並將這些群組 與實際資料比較,進而評估RFM值是否有助於預測客戶的購買行為。 結果顯示,RFM策略,有助於預測下次採購並且知道誰是忠誠度高的顧客。使用RFM分析,市場行銷人員可以按照RFM群組針對每個族群的進行忠誠度行銷活動。 其次,要提高顧客的滿意度,本研究提出了基於協同過濾的推薦方法。 這個推薦系統是有效的技術,它藉著給客戶推薦正確的產品,主要可以增加利潤。 本研究以兩段推薦程序方式來進行,第一頁推薦和第二推薦。 而且為了比較第一段的推薦方法,本研究提出的客戶可能採購項目類別推薦和A-線上電子商業採用的最佳暢銷產品推薦方法兩者都納入評估。 實驗結果顯示,研究提出的推薦和暢銷推薦結合的方法效果最好。因為產品的Level會影響推薦系統的效率。 從第二段推薦評估的結果,類別推薦時,TOP 6方法獲得最好的結果;產品推薦時,TOP3方法獲得最好的結果。 | zh_TW |
dc.description.abstract | Customer relationship management as a marketing idea has provided understanding of the customer’s needs and delivery the philosophy of customer orientation. However, most companies have difficulty in customer relationship management strategies to develop long-term and positive relationship with customers. To predict change in customer behavior and provide customer-driven service, this study has proposed CRM strategies based on RFM analysis and collaborative filtering.
First, the RFM method, Recency(R), Frequency(F) and Monetary(M), and K-means method were used to measure customers Loyalty and cluster customers into groups with similar RFM values. The 8 segments of customer were defined and were compared with real word data for evaluating whether RFM value helps to predict customer’s purchasing behavior. The result shows that RFM strategy helps marketers to predict next purchase and know who has strong loyalty. Using this analysis, marketer can plan each of loyalty programs depending on RFM groups. Second, to enhance the customer satisfaction, the recommendation method based on collaborative filtering has been proposed. The recommendation system is powerful technology mainly to promote items for increasing profit by recommending right products to customers. In this study, two-step recommendation process was conducted, first page recommendation and second recommendation. The proposed recommendation providing items and categories which customers are likely to purchase and the best selling recommendation system A-online shopping mall adopts, were evaluated in first page recommendation. The experimental results demonstrate that the combined method, proposed recommendation for item level and best selling recommendation for category level, performs better than the existing recommendation because the efficiency of recommendation is affected by the level of the taxonomy. From the result of second recommendation experiment, the recommendation of category has best performance under TOP 6 and the recommendation of item has best performance under TOP 3. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T00:11:43Z (GMT). No. of bitstreams: 1 ntu-101-R99724069-1.pdf: 1474135 bytes, checksum: 6087bc014e356db60552dd0f6b5a1f79 (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | Contents
謝 詞 I 中文摘要 II Abstract III Contents V List of Tables VII List of Figures IX List of Equations X I. Introduction 1 1.1 Background 2 1.2 Research Objectives 3 1.3 Research outline 4 1.4 Research Procedure 5 II. Literature Review 6 2.1 Customer Relationship Management (CRM) 7 2.1.1 Definitions of CRM 7 2.1.2 CRM objectives and activities 9 2.1.3 CRM and Data mining 10 2.2 Customer concentration issue 12 2.2.1 80/20 Rule 12 2.3 Recommendation system 13 2.3.1 Definition of recommendation system 13 2.3.2 Recommendation system examples 14 III. Research Methodology 18 3.1 Data collection and description 19 3.2 RFM analysis 20 3.2.1 RFM definition 20 3.2.2. Customer segmentation and RFM evaluation 22 3.3 K – means algorithm 23 3.4 Recommendation methods 24 3.4.1 Collaborative Filtering 24 3.4.2 Personalized web page 26 3.5 Evaluation Metrics 29 IV. Experiments 31 4.1 Data collection and description 32 4.1.1 Source of data 32 4.1.2 Descriptive statistics 32 4.2 Experimental Steps / Research framework 34 4.2.1 Data preprocessing 35 4.2.2 Segments based on RFM 37 4.2.3 Cluster customer value by K-means algorithm 40 4.2.4 Product Recommendation 42 4.3 Evaluation 47 4.3.1 RFM analysis 47 4.3.2 First page recommendation 48 4.3.3 Second recommendation 61 V. Conclusions 65 5.1 Discussion 66 5.2 Contribution 67 5.3 Limitation 67 5.4 Further study 68 References 69 Appendix 73 | |
dc.language.iso | en | |
dc.title | 探討在RFM分析與協作性過濾架構下之顧客關係管理策略-以電子商務為例 | zh_TW |
dc.title | CRM strategies based on RFM analysis and Collaborative Filtering: An Empirical Study on E-commerce | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 周建亨,陳靜怡 | |
dc.subject.keyword | 客戶關係管理,RFM,協作性過濾,K means algorithm,推薦系統, | zh_TW |
dc.subject.keyword | CRM,RFM,Collaborative Filtering,K means algorithm,Recommendation System, | en |
dc.relation.page | 74 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-07-12 | |
dc.contributor.author-college | 管理學院 | zh_TW |
dc.contributor.author-dept | 國際企業學研究所 | zh_TW |
顯示於系所單位: | 國際企業學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 1.44 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。