請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65776完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳宏銘(Homer H. Chen) | |
| dc.contributor.author | Keng-Sheng Lin | en |
| dc.contributor.author | 林耿生 | zh_TW |
| dc.date.accessioned | 2021-06-17T00:11:33Z | - |
| dc.date.available | 2015-07-18 | |
| dc.date.copyright | 2012-07-18 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-07-12 | |
| dc.identifier.citation | [1] B. T. Truong and S. Venkatesh, “Video Abstraction: A systematic review and classification,” ACM Trans. Multimedia Computing, Communication and Applications, vol. 3, no. 1, pp. 1–37, Feb. 2007.
[2] R. W. Picard, Affective Computing, MIT Press, Cambridge, MA, 2000. [3] F. Dolcos, K. S. LaBar, and R. Cabeza, “The memory-enhancing effect of emotion: Functional neuroimaging evidence,” in Memory and Emotion: Interdisciplinary Perspectives, B. Uttl and N. Ohta, Eds. Blackwell, 2006, pp. 107–134. [4] 'TV rating broadcast top 25,' TV by the numbers, Dec. 11, 2011. [Online]. Available: http://tvbythenumbers.zap2it.com/category/weekly-tv-ratings-rankings/nielsen-weekly-top-broadcast-tv-show-ratings/ [Accessed: Dec. 11, 2011]. [5] P. Holland, The Television Handbook, 2nd edition, Routledge, 2000. [6] J. Marshall and A. Werndly, The Language of Television, 1st edition, Routledge, 2002. [7] K. Minami, A. Akutsu, H. Hamada, and Y. Tonomura, “Video handling with music and speech detection,” IEEE Multimedia, vol. 5, no. 3, pp. 17–25, Jul.–Sept. 1998. [8] T. Moriyama and M. Sakauchi, “Video summarization based on the psychological unfolding of a drama,” System and Computers in Japan, vol. 33, no. 11, pp. 39–49, Oct. 2002. [9] Y. -H. Chen, J. -H. Kuo, W. -T. Chu, and J. -L. Wu, “Movie emotional event detection based on music mood and video tempo,” Int. Conf. Consumer Electronics, Las Vegas, NV, 2011, pp. 151–152. [10] K. -S. Lin, A. Lee, Y. -H. Yang, C. -T. Lee, and H. H. Chen, “Automatic highlights extraction for drama video using music emotion and human face features,” Proc. IEEE Int. Workshop on Multimedia Signal Processing, Hang Zhou, CHN, 2011. [11] R. Lienhart, S. Pfeiffer, and W. Effelsberg, “Video abstracting,” ACM Communications, vol. 40, no. 12, pp. 54–62, Dec. 1997. [12] Y. -F. Ma, X. -S. Hua, L. Lu, and H. -J. Zhang, “A generic framework of user attention model and its application in video summarization attention model,” IEEE Trans. Multimedia, vol. 7, no. 5, pp. 907–919, Oct. 2005. [13] A. Hanjalic and L. -Q. Xu, “Affective video content representation and modeling,” IEEE Trans. Multimedia, vol. 7, no. 1, pp. 143–154, Feb. 2005. [14] S. Pfeiffer, R. Lienhart, S. Fischer, and W. Effelsberg, “Abstracting digital movies automatically,” J. Visual Communication and Image Representation, vol. 7, no. 4, pp. 345–353, Dec. 1996. [15] H. -W. Chen, J. -H. Kuo, W. -T. Chu, and J. -L. Wu, “Action movies segmentation and summarization based on tempo analysis,” ACM Int. Workshop on Multimedia Information Retrieval, New York, NY, 2004, pp. 251–258. [16] P. Atrey, M. Hossain, A. Saddik, and M. Kankanhalli, “Multimodal fusion for multimedia analysis: A survey,” J. Multimedia Systems, vol. 16, no. 6, pp. 345–379, Apr. 2010. [17] B. Jung, J. Song, and Y. Lee, 'A narrative-based abstraction framework for story-oriented video,' ACM Trans. Multimedia Computing, Communications and Applications, vol. 3, no. 2, Article #11, May 2007. [18] A. Goldstein, “Thrills in response to music and other stimuli,” Physiological Psychology, vol. 8, no. 1, pp. 126–129, Mar. 1980. [19] J. Panksepp, “The emotional sources of ‘chills’ induced by music,” Music Perception, vol. 13, no. 2, pp. 171–207, 1995. [20] J. You, G. Liu, L. Sun, and H. Li, “A multiple visual models based perceptive analysis framework for multilevel video summarization,” IEEE Trans. Circuits System Video Technology, vol. 17, no. 3, pp. 273–285, Mar. 2007. [21] G. Evangelopoulos, A. Zlatintsi, G. Skoumas, K. Rapantzikos, A. Potamianos, P. Maragos, and Y. Avrithis, “Movie summarization based on audiovisual saliency detection,” Proc. IEEE Int. Conf. Image Processing, SanDiego, CA, 2008, pp. 12–15. [22] A. Sen and M. Srivastava, Regression Analysis: Theory, Methods, and Applications, New York, Springer, 1990. [23] P. J. Lang, “The emotion probe, ” American Psychologist, vol. 50, no. 5, pp. 372–385, May 1995. [24] J. A. Russell, A. Weiss, and G. A, Mendelsohn, “Affect grid: A single-item scale of pleasure and arousal,” J. Personality and Social Psychology, vol. 57, no. 3, pp. 493–502, Sept. 1989. [25] C. -C. Chang and C. -J. Lin, LIBSVM: A library for support vector machines, 2001. [26] A. Jain, K. Nandakumar, and A. Ross, “Score normalization in multimodal biometric system,” J. Pattern Recognition, vol. 38, no. 12, pp. 2270–2285, Dec. 2005. [27] P. Cano, E. Batlle, T. Kalker, and J. Haitsma, “A review of audio fingerprinting,” J. VLSI Signal Processing, vol. 41, no. 3, pp. 271–284, Nov. 2005. [28] A. Wang, “An industrial-strength audio search algorithm,” Proc. Int. Society for Music Information Retrieval, Baltimore, MD, 2003, pp. 7–13. [29] D. Ellis, “Robust landmark-based audio fingerprinting”. [Online]. Available: http://labrosa.ee.columbia.edu/matlab/fingerprint/ [30] A. Mehrabian, “Pleasure-arousal-dominance: A general framework for describing and measuring individual differences in temperament,” Current Psychology, vol. 14, no. 4, pp. 261–292, Dec. 1996. [31] Y. -H. Yang, Y. -C. Lin, Y. -F. Su and H. H. Chen, “A regression approach to music emotion recognition,” IEEE Trans. Audio, Speech and Language Processing, vol. 16, no. 2, pp. 448–457, Feb. 2008. [32] O. Lartillot, P. Toiviainen, and T. Eerola, “A Matlab toolbox for music information retrieval,” in Data Analysis, Machine Learning and Applications, C. Preisach, H. Burkhardt, L. Schmidt-Thieme, and R. Decker, Eds., Springer-Verlag, 2008, pp. 261–268. [33] T. Eerola, O. Lartillot, and P. Toiviainen, “Prediction of multidimensional emotional ratings in music from audio using multivariate regression models,” Proc. Int. Society for Music Information Retrieval Conf., Kobe, JP, 2009, pp. 621–626. [34] R. Palermo and G. Rhodes, “Are you always on my mind? A review of how face perception and attention interact,” Neuropsychologia, vol. 45, no. l, pp. 75–92, Jun. 2007. [35] N. Kanwisher, “Domain specificity in face perception,” Nature Neuroscience, vol. 3, no. 8, pp. 759–763, Aug. 2000. [36] L. D. Giannetti, Understanding Movies, 10th edition, Prentice Hall, 2004. [37] W. Kienzle, G. Bakir, M. Franz, and B. Scholkopf, “Face detection - efficient and rank deficient,” Advances in Neural Information Processing Systems, Vancouver, CA, 2005, pp. 673–680. [38] H. -J. Zhang, A. Kankanhalli, and S. W. Smoliar, “Automatic partitioning of full-motion video,” Multimedia Systems, vol. 1, no. 1, pp.10–28, Jun. 1993. [39] LIBSVM – A Library for Support Vector Machines. [Online]. Available: http://www.csie.ntu.edu.tw/~cjlin/libsvm [40] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, John Wiley & Sons, Inc., 2000. [41] Extracted Highlight Sequences. [Online]. Available: http://mpac.ee.ntu.edu.tw/~freedom76912/ [42] M. Hollander and D. A. Wolfe, Nonparametric Statistical Methods, John Wiley & Sons Inc., 1999. [43] L. -C. Ou, M. R. Luo, A. Woodcock, and A. Wright, 'A study of colour emotion and colour preference part I: Colour emotions for single colours,' Color research and Application, vol. 29, no. 3, pp. 232–240, Jun. 2004. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65776 | - |
| dc.description.abstract | 因為戲劇節目中富含情感的段落往往是最吸引觀眾的部分,所以利用情緒為 基礎的精采片段擷取系統對於戲劇影片檢索和預告片生成是相當有助益的。在本 篇論文當中,我們將精采片段擷取公式化成迴歸的問題,並利用迴歸理論預測影 片片段引發觀眾情感的程度。有別於一般系統從實驗性的觀察中定義試誤性的規 則,本系統利用機器學習決定精采片段與影音特徵的關係。此外,我們從心理學 和戲劇學的角度分析戲劇節目的特性以提出與精采片段相關的影音特徵:人臉、 音樂情緒、鏡頭長度、動作幅度。最後,我們利用量化的方式分析本系統在精采 片段擷取上的準確度。 | zh_TW |
| dc.description.abstract | Emotion-based highlights extraction is useful for retrieval and automatic trailer generation of drama video because the rich emotion part of a drama video is often the center of attraction to the viewer. In this thesis, we formulate highlights extraction as a regression problem to extract highlight segments and to predict how strong the viewer’s emotion would be evoked by the video segments. Unlike conventional rule-based approaches that rely on heuristics, the proposed system determines the relation between drama highlights and audiovisual features by machine learning. We also examine the special characteristics of drama video and propose human face, music emotion, shot duration, and motion magnitude as feature sets for highlights extraction. Quantitative evaluation results are provided to illustrate the performance of the system. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T00:11:33Z (GMT). No. of bitstreams: 1 ntu-101-R99942041-1.pdf: 1161070 bytes, checksum: d3aa41ab4a5ad21d703f61e1ed408620 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 口試委員會審定書...#
誌謝 ...i 中文摘要 ...ii ABSTRACT ...iii CONTENTS ...iv LIST OF FIGURES ...vi LIST OF TABLES ...vii Chapter 1 Introduction...1 Chapter 2 Related Work...4 2.1 Rule-Based Approach ...4 2.2 Attention-Based Approach...5 Chapter 3 Regression-Based Approach...6 Chapter 4 System Description...8 4.1 Data Collection ...9 4.2 Subjective Test ...9 4.3 Regressor Training...10 4.4 Forming the Highlight Sequence...11 Chapter 5 Music Detection and Music Emotion Recognition...12 5.1 Adaptive Music Detection and Identification by Audio Fingerprint ...13 5.2 Music Emotion Recognition...16 Chapter 6 Visual Features Extraction...17 6.1 Human Face ...17 6.2 Shot Duration...19 6.3 Motion Magnitude ...20 Chapter 7 Experimental Results...22 7.1 Evaluation of Feature Fusion...23 7.2 Evaluation of Feature Combination...24 7.3 Evaluation of the Whole System ...26 Chapter 8 Discussion...27 Chapter 9 Conclusion ...28 REFERENCE ...29 Appendix ...34 Drama Dataset...34 | |
| dc.language.iso | en | |
| dc.subject | 戲劇節目 | zh_TW |
| dc.subject | 精采片段 | zh_TW |
| dc.subject | 情感內容 | zh_TW |
| dc.subject | 迴歸 | zh_TW |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | drama video | en |
| dc.subject | highlights extraction | en |
| dc.subject | regression | en |
| dc.subject | machine learning | en |
| dc.subject | Affective content | en |
| dc.title | 利用機器學習之影片精彩片段擷取系統 | zh_TW |
| dc.title | Learning-Based Video Highlights Extraction | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡振家,杭學鳴,張寶基,林嘉文 | |
| dc.subject.keyword | 情感內容,精采片段,戲劇節目,機器學習,迴歸, | zh_TW |
| dc.subject.keyword | Affective content,highlights extraction,drama video,machine learning,regression, | en |
| dc.relation.page | 35 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-07-12 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 1.13 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
