Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農藝學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65770
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor高景輝(Ching-Huei Kao)
dc.contributor.authorYun-Yen Hsuen
dc.contributor.author許雲雁zh_TW
dc.date.accessioned2021-06-17T00:11:21Z-
dc.date.available2013-07-18
dc.date.copyright2012-07-18
dc.date.issued2012
dc.date.submitted2012-07-12
dc.identifier.citation鄭鑫源 (2011) 水稻ATP-Binding Cassette (ABC) 轉運蛋白OsABCG36的功能性分析. 國立台灣大學農業化學系碩士論文
Beligni MV, Fath A, Bethke PC, Lamattina L, Jones RL (2002) Nitric oxide acts as an antioxidant and delays programmed cell death in barley aleurone layers. Plant Physiol 129: 1642-1650
Bessin-Bard A, Pugin A, Wendehenne D (2008) New insights into nitric oxide signaling in plants. Annu Rev Plant Biol 59: 21-39
Bethke PC, Badger MR, Jones RL (2004) Apoplastic synthesis of nitric oxide by plant tissues. The Plant Cell 16: 332-341
Bories PN, Bories C (1995) Nitrate determination in biological fluids by an enzymatic one-step assay with nitrate reductase. Clin Chem 41: 904-907
Bush DS (1995) Calcium regulation in plant cells and its role on signaling. Annu Rev Plant Physiol Plant Mol Biol 46: 95-122
Cao XY, Xuan W, Liu ZY, Li XN, Zhao N, Xu P, Wang Z, Guan RZ, Shen WB (2007) Carbon monoxide promotes lateral root formation in rapeseed. J Integr Plant Biol 49: 1070-1079
Casimiro I, Marchant A, Bhalerao RP, Beekman T, Dhooge S, Swarup R, Graham N, Inze D, Sandberg G, Casero PJ, Bennett M (2001) Auxin transport promotes Arabibopsis lateral root initiation. Plant Cell 13: 843-852
Chen CT, Chou CM, Hou SM, Li CC, Kao CH (1991) Senescence of rice leaves XXVI. effects of light, benzyladenine, abscisic acid and methyl jasmonate on the senescence of detached leaves of a chlorophyll-less mutant. Chinese Agron J 1: 3-9
Chen CW, Yang YW, Lur HS, Tsai YG, Chang MC (2006) A novel function of abscisic acid in the regulation of rice (Oryza sativa L.) root growth and development. Plant Cell Physiol 47: 1–13
Chen XY, Ding X, Xu S, Wang R, Xuan W, Cao ZY, Chen J, Wu HH, Ye MB, Shen WB (2009) Endogenous hydrogen peroxide plays a positive role in the upregulation of heme oxygenase and acclimation to oxidative stress in wheat seedling leaves. J Integr Plant Biol 51: 951–960
Chen YH, Chao YY, Hsu YY, Hong CY, Kao CH (2012) Heme oxygenase is involved in nitric oxide- and auxin-induced lateral root formation in rice. Plant Cell Rep. 31: 1085-1091
Chen YH, Kao CH (2012) Calcium is involved in nitric oxide- and auxin-induced lateral root formation in rice. Protoplasma 249: 187–195
Clementi E (1998) Role of nitric oxide and its intracellular signaling pathways in the control of Ca2+ homeostasis. Biochem Pharmacol 55: 713-718
Correa-Aragunde N, Graziano M, Chevallier C, Lamattina L (2006) Nitric oxide modulates the expression of cell cycle regulatory genes during lateral root formation in tomato. J Exp Bot 57: 581-588
Correa-Aragunde N, Graziano M, Lamattina L (2004) Nitric oxide plays a central role in determining lateral root development in tomato. Planta 218: 900-905
Crawford NM, Galli M, Tischner R, Heimer YM, Okamoto M, Mack A (2006) Response to Zemojtel et al: Plant nitric oxide synthase: back to square one. Trends Plant Sci 11: 525-527
Creelman RA, Mullet JE (1997) Biosynthesis and action of jasmonates in plants. Annu Rev Plant Physiol Plant Mol Biol 48: 355-381
Cui WT, Fu GQ, Wu HH, Shen WB (2011) Cadmium-induced heme oxygenase-1 gene expression is associated with the depletion of glutathione in the roots of Medicago sativa. Biometals 24: 93-103
Dathe W, Ronsch H, Preiss A, Schade W, Sembdner G, Schreiber K (1981) Endogenous plant hormones of the broad bean, Vicia faba L. D(-)-jasmonic acid, a plant growth inhibitor in pericarp. Planta 153: 530-535
Davis SJ, Bhoo SH, Durski AM, Walker JM, Vierstra RD (2001) The heme- oxygenase family required for phytochrome chromophore biosynthesis is necessary for proper photomorphogenesis in higher plants. Plant Physiol 126: 656-669
Delledonne M, Xia Y, Dixon RA, Lamd C (1998) Nitric oxide functions as a signal in plant defense resistance. Nature 394: 585-588
Durner J, Klessig DF (1999) Nitric oxide as a signal in plants. Curr Opin Plant Biol 2: 369-374
Emborg TJ, Walker JM, Noh B, Vierstra RD (2006) Multiple heme oxygenase family members contribute to the biosynthesis of the phytochrome chromophore in Arabidopsis. Plant Physiol. 140: 856-868
Fattorini L, Falasca G, Kevers C, Rocca LM, Zadra C, Altamura MM (2009) Adventitious rooting is enhanced by methyl jasmonate in tobacoo thin cell layers. Planta 231: 155-168
Forde BG, Lorenzo H (2001) The nutritional control of root development. Plant Soil 232: 51-68
Forstermann U, Closs EI, Pollock JS, Nakane M, Schwarz P, Gath I, Kleinert H (1994) Nitric oxide isozymes. Characterization, purification, molecular cloning and functions. Hyper 23: 1121-1131
Gad N, Atta-Aly M (2006) Effect of cobalt on the formation, growth and development of adventitious roots in tomato and cucumber cuttings. J Appl Sci Res 2: 423-439
Garcia-Mata C, Lamattina L (2001) Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiol 126: 1196-1204
Gehring C, Irving H, Parish R (1990) Effects of auxin and abscisic acid on cytosolic calcium and pH in plant cells. Proc Natl Acad Sci USA 87: 9645-9649
Gisk B, Yasui Y, Kohchi T, Frankenberg-dinkel N (2010) Characterization of the haem oxygenase protein family in Arabidopsis thaliana reveals a diversity of functions. Biochem J 425: 425-434
Gouvea CMAP, Souza JF, Magalhaes ACN, Martins IS (1997) NO-releasing substances that induce growth elongation in maize root segments. Plant Growth Regul 21: 183-187
Guo FQ, Olamoto M, Crawford NM (2003) Identification of a plant nitric oxide synthase gene involved in hormonal signaling. Sci 302: 100-103
Guo K, Xia K, Yang ZM (2008) Regulation of tomato lateral root development by carbon monoxide and involvement in auxin and nitric oxide. J Exp Bot 58: 3443-3452
Han B, Xu S, Xie YJ, Huang JJ, Wang LJ, Yang Z, Zhang CH, Sun Y, Shen WB, Xie GS (2011) ZmHO-1, a maize haem oxygenase-1 gene, plays a role in determining lateral root development. Plant Sci 184: 63-74
Hansen H, Grossmann K (2000) Auxin-induced ethylene triggers abscisic biotynthesis and growth inhibition. Plant Physiol 124: 1437-1448
Hao ZB, Ichii M (1999) A mutant RM09 of rice (Oryza sativa L.) exhibiting altered lateral root initiation and gravitropism. Jpn J Crop Sci 68: 245-252
Hesitt EJ (1953) Metal inter-relationship in plant nutrition. J Exp Bot 4: 59-64
Hossain MA, Munemasa S, Uraji M, Nakamura Y, Mori IC, Murata Y (2011) Involvement of endogenous abscisic acid in methyl jasmonate-induced stomatal closure in arabidopsis. Plant Physiol 156: 430-438
Hsu YT, Kao CH (2004) Cadmium toxicity is reduced by nitric oxide in rice leaves. Plant Growth Regul 42: 227-238
Hsu YY, Chao YY, Kao CH (2012) Biliverdin-promoted lateral root formation is mediated through heme oxygenase in rice. Plant Signaling Behav 7: 1-3
Huang JJ, Han B, Xu S, Zhou MX, Shen WB (2010) Heme oxygenase-1 is involves in the cytokinin-induced alleviation of senescence in detached wheat leaves during dark incubation. J Plant Physiol 168: 768-775
Hung KT, Kao CH (2003) Nitric oxide counteracts the senescenes of rice leaves induced by abscisic acid. J Plant Physiol 160: 871-879
Hung KT, Kao CH (2007) The participation of hydrogen peroxide in methyl jasmonate-induced NH4+ accumulation in rice leaves. J Plant Physiol 164: 1469-1479
Izawa T, Oikawa T, Tokutomi S, Okuno K, Shimamoto K (2000) Phytochromes confer the photoperiodic control of flowering in rice (a short-day plant). Plant J 22: 391-399
Jana S, Choudhuri MA (1981) Glycolate metabolism of three submersed aquatic angiosperms: effect of heavy metals. Aquatic Botany 11:67-77
Koda Y, Kikuta Y (1991) Possible involvement of jasmonic acid in tuberization of yam plants. Plant Cell Physiol 32: 629-633
Lamattina L, Garcia-Mata C, Graziano M, Pagnussat G (2003) Nitric oxide: the versatility of an extensive signal molecule. Annu Rev Plant Biol 54: 109-136
Lamotte O, Courtois C, Barnavon PA, Wendehenne D (2005) Nitric oxide in plants: the biosynthesis and cell signaling propertied of a fascinating molecular. Planta 221: 1-4
Lanteri ML, Pagnussat GC, Lamattina L (2006) Calcium and calcium-dependent protein kinases are involved in nitric oxide- and auxin induced adventitious root formation in cucumber. J Exp Bot 57: 1341-1351
Lee JS, Mulkey TJ, Evans ML (1983) Gravity-induced polar transport of calcium across root tips of maize. Plant Physiol 73: 1341-1351
Lee TM, Lur HS, Lin YH, Chu C (1996) Physiological and biochemical changes related to methyl jasmonate-induced chilling tolerance of rice (Oryza sativa L.) seedlings. Plant Cell Environ 19: 65-74
Leshem YY, Wills RBH, KuVVV (1998) Evidence for the function of the free radical gas nitric oxide (NO) as an endogenous regulating factor in higher plants. Plant Physiol Biochem 36: 825-833
Li MY, Cao ZY, Shen WB, Cui J (2011) Molecular cloning and expression of a cucumber (Cucumis sativus L.) heme oxygenase-1 gene, CsHO1, which is involved in adventitious root formation. Gene 486: 47-55
Li SW, Xue LG, Xu SJ, Feng HY, An LZ (2009) Hydrogen peroxide acts as a signal molecule in the adventitious root formation of mung bean seedlings. Environ Exp Bot 65: 63-71
Liu J, Reid RJ, Smith FA (2000) The mechanism of cobalt toxicity in mung beans. Physiol Plant 110: 104-110
Liu K, Xu S, Xuan W, Ling T, Cao Z, Huang B, Sun Y, Fang L, Liu Z, Zhao N, Shen W (2007) Carbon monoxide counteracts the inhibition of seed germination and alleviates oxidative damage caused by salt stress in Oryza sativa. Plant Sci 172: 544-555
Liu YH, Xu S, Ling TF, Xu LL, Shen WB (2010) Heme oxygenase/carbon monoxide system participates in regulating wheat seed germination under osmotic stress involving the nitric oxide pathway. J Plant Physiol 167: 1371-1379
Malamy JE (2005) Intrinsic and environmental response pathways that regulate root system architecture. Plant Cell Environ 28: 67-77
Malamy JE, Ryan KS (2001) Environmental regulation of lateral root initiation in Arabidopsis. Plant Physiol 127: 899-909
Maria Carmen PL, Nieves FG, Enrique O, Maria Carmen AT, Maria Carmen GJ (2009) Methyl jasmonate-induced antioxidant defence in root apoplast from sunflower seedlings. Environ Exp Bot 66: 9-17
Monzon GC, Pinedo M, Lamattina L, de la Canal L (2012) Sunflower root growth regulation: the role of jasmonic acid and its relation with auxins. Plant Growth Regul 66: 129-136
Moons A, Prinsen E, Bauw G, Van Montagu M (1997) Antagonistic effects of abscisic acid and jasmonates in salt stress-inducible transcripts in rice roots. Plant Cell 9: 2243-2259
Muday GK, Haworth P (1994) Tomato root growth, gravitropism and lateral root development: correlation with auxin transport. Plant Physiol Biochem 32: 193-203
Munemasa S, Oda K, Watanabe-Sugimoto M, Nakamura Y, Shimoishi Y, Murata Y (2007) The coronatine-insensitive1 mutation reveals the hormaonal signaling interaction between abscisic acid and methyl jasmonate in Arabidopsis guard cells: specific impairment of ion channel activation and second messenger production. Plant Physiol 143: 1398-1407
Muramoto T, Kohchi T, Yokota A, Hwang I, Goodman HM (1999) The Arabidopsis photomorphogenic mutant hy1 is deficient in phytochrome chromophore biosynthesis as a result of a mutation in a plastid heme oxygenase. Plant Cell 11: 335-348
Muramoto T, Tsurui N, Terry MJ, Yokota A, Kochi T (2002) Expression and biochemical properties of a ferredoxin-dependent heme oxygenase required to phytochrom chromophore synthesis. Plant Physiol 130: 11958-11966
Negi S, Ivanchenko MG, Muday GK (2008) Ethylene regulates lateral root formation and auxin transport in Arabidopsis thaliana. Plant J 55:175-187.
Neill SJ, Desikan R, Clarke A, Hancock JT (2002) Nitric oxide is a novel component of abscisic acid signaling in stomatal guard cells. Plant Physiol 128: 13-16
Noriega G, Cruz DS, Batlle A, Tomaro M, Balestrasse KB (2012) Heme oxygenase is involved in the protection exterted by jasmonic acid against cadium stress in soybean roots. J Plant Growth Regul 31: 79-89
Noriega GO, Balestrasse KB, Batlle A, Tomaro ML (2004) Heme oxygenase exerts aprotevtive role against oxidative stress in soybean leaves. Biochem Biophys Res Commum 323: 1003-1008
Noriega GO, Yannarelli GG, Balestrasse KB, Battle A, Tomaro ML (2007) The effect of nitric oxide on heme oxygenase gene expression in soybean leaves. Planta 226: 1155–1163
Orozco-Cardenas ML, Narvaez-Vasquez J, Ryan CA. (2001) Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin and methyl-jasmonate. Plant Cell 13: 179-191
Pagnussat GC, Simontacchi M, Puntarulo S, Lamattina L (2002) Nitric oxide is required for root organogenesis. Plant Physiol 129: 954-956
Pedroso MC, Durzan DI (2000) Effect of different gravity environments on DNA fragmentation and cell death in Kalanchoe leaves. Ann Bot 86: 983-994
Potters G, Pasternak TP, Guisez Y, Palme KJ, Jansen MAK (2007) Stress-induced morphogenic responses: growing out of trouble? Trend Plant Sci 12: 98-105
Robinson D (1994) The responses of plants to non-uniform supplies of nutrients. New Phytol 127: 635-674
Shekhawat GS, Verma K (2010) Haem oxygenase (HO): an overlooked enzyme of plant metabolism and defence. J Exp Bot 61: 2255–2270
Shen Q, Jiang M, Li H, Che LL, Yang ZM (2011) Expression of a Brassica napus heme oxygenase confers plant tolerance to mercury toxicity. Plant Cell Environ 34: 752-763
Staswick PE, Su W, Howell SH (1992) Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant. Proc Natl Acad Sci USA 89: 6837-6849
Sun J, Xu Y, Ye S, Jiang H, Chen Q, Liu F, Zhou W, Chen R, Li X, Tietz O, Wu X, Cohen JD, Palme K, Li C (2009) Arabidopsis ASA1 is important for jasmonate-mediated regulation of auxin biosynthesis and transport during lateral root formation. Plant Cell 21: 1495-1511
Sung CH, Hong JK (2010) Sodium nitroprusside mediates seedling development and attenuation of oxidative stresses in Chinese cabbage. Plant Biotech Rep 4: 243-251
Terry MJ, Kendrick RE (1996) The aurea and yellow-green-2 mutants of tomato are deficient in phytochrome chromophore synthesis. J Biol Chem 271: 21681–21686
Terry MJ, Linley PJ, Kohchi T (2002) Making light of it: the role of plant haem oxygenase in phytochrome chromophore synthesis. Biochem Soc Trans 30: 604-609
Toro FJ, Martin-Closas L, Pelacho AM (2003) Jasmonates promote cabbage (Brassica oleracea L. var Capitata L.) root and shoot development. Plant Soil 255: 77-83
Tsai F-Y, Lin CC, Kao CH (1997) A comparative study of the effects of abscisic acid and methyl jasmonate on seedling growth of rice. Plant Growth Regul 21:37-42
Wang H, Taketa S, Miyal A, Hirochika H, Ichii M (2006) Isolation of a novel lareral-rootless mutant in rice (Oryza sativa L.) with reduced sensitivity to auxin. Plant Sci 170:70-77
Wang S, Ichii M, Taketa S, Xu L, Xia K, Zhou X (2002) Lateral root formation in rice (Oryza sativa): promotion effect of jasmonic acid. J Plant Phsyiol 159: 827-832
Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100: 681-697
Weidhase RA, Kramell HM, Lehmann J, Liebicsu HW, Lerbs W, Parthier B (1987) methyljasmonate-induced changes in the polypeptide pattern of senescing barley leaf segments. Plant Sci 51: 177-186
Wilks A (2002) Heme oxygenase: evolution, structure, and mechanism. Antioxid Redox Signal 4: 603–614
Willmott N, Sethi JK, Walseth TF, Lee HC, White AM, Galione A (1996) Nitric oxide-induced mobilization of intracellular calcium via the cyclic ADP-ribose signaling pathway. J Biol Chem 271: 3699-3705
Xiong J, Lu H, Lu K, Duan Y, An L, Zhu C (2009) Cadmium decreases crown root number by decreasing endogenous nitric oxide, which is indispensable for crown root primodia initiation in rice seedlings. Planta 230: 599-610
Xu S, Sa ZA, Cao ZY, Xuan W, Huang BK, Ling TF, Hu QY, ShenWB (2006) Carbon monoxide alleviates wheat seed germination inhibition and counteracts lipid peroxidation mediated by salinity. J Integr Plant Biol 48: 1168-1176
Xu S, Zhang B, Cao ZY, Ling TF, Engel KH, An G, Shu QY (2011) Heme oxygenase is involved in cobalt chloride-induced lateral root development in tomato. Biometals 24: 181-191
Xuan W, Zhu FY, Xu S, Huang BK, Ling TF, Qi JY, Ye MB, Shen WB (2008) The heme oxygenase/carbon monoxide system is involved in the auxin-induced cucumber adventitious root process. Plant Physiol 148: 881-893
Yamane H, Takahashi H, Abe H, Yokota T, Takahashi N (1981a) Identification of jasmonic acid in three species of higher plants and its biological activities. Plant Cell Physiol 22: 689-697
Yamane H, Takahashi N, Ueda J, Keto J (1981b) Resolution of (±)-methyl jasmonate by high performance liquid chromatography and the inhibitory effect of (+)-enantiomer on the growth of rice seedlings. Agric Biol Chem 45: 1709-1711
Yamasaki H (2000) Nitrite-dependent nitric oxide production pathway: implications for involvement of active nitrogen species in photoinhibition in vivo. Philos Trans R Soc Lond B Biol Sci 355: 1477–1488.
Yannarelli GG, Noriega GO, Batlle A, Tomaro ML (2006) Heme oxygenase up-regulation in ultraviolet-B irradiated soybean plants involves reactive oxygen species. Planta 224: 1154-1162
Zang Y, Turner JG (2008) Wound-induced endogenous jasmonates stunt plant growth by inhibiting mitosis. PLos One 3: e3699
Zhu CH, Gan LJ, Shen ZG, Xia K (2006) Interactions between jasmonates and ethylene in the regulation of root hair development in Arabidopsis. J Exp Bot 57: 1299-1308
Zilli CG, Santa-Cruz MS, Yannarelli GG, Noriega GO, Tomaro ML, Balestrasse KB (2009) Heme oxygenase contributes to alleviate salinity damage in Glycine Max L. leaves. Environ Exp Bot 64: 83-89
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65770-
dc.description.abstract本論文係利用水稻台中在來一號 (Oryza sativa L. cv. Taichung Native 1, TN1)探討甲基茉莉酸鹽 [methyl jasmonate (MJ)]與氯化鈷 (CoCl2)對水稻側根形成之影響,同時探討一氧化氮(NO)、heme oxygenase (HO)與Ca2+於其中所扮演的角色。
  MJ處理會增加水稻側根的數目與NO之形成,同時處理MJ以及NO的清除劑carboxy-2-phenyl-4, 4, 5, 5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO)後,會降低水稻側根數目與NO之形成。利用nitrate reductase (NR)抑制劑tungstate (Tu)可完全抑制MJ誘導水稻側根與NO之形成,而使用nitric oxide synthase (NOS)抑制劑NG-nitro-L-arginine methyl ester hydrochloride (L-NAME)則無法完全抑制MJ誘導側根與NO形成,顯示MJ促進NO形成是與NR的活性相關。經NO螢光染色結果,可清楚的看到MJ誘導NO產生與側根根原基形成的位置一致。由此推測MJ所引起的側根發育可能是藉由NO作為傳遞訊息分子。
  MJ處理會提升血紅素氧化酵素 (heme oxygenase, HO; EC1.14.99.3)的活性。從時間軸來看,HO活性的增加早於側根出現之前,暗示MJ可能是藉由影響HO活性上升,進而誘導側根形成。處理HO抑制劑zinc protoporphyrinIX (ZnPPIX)以及CO清除劑hemoglobin (Hb)會顯著降低MJ所增加HO活性及側根的數目。外加HO的另一個產物biliverdin (BV)後發現,BV不但促進水稻側根數目,亦使得HO的活性增加。此外,我們亦發現了Ca2+會影響側根之發育,處理Ca2+的螯合物、通道抑制劑及攜鈣素 (camodulin)的拮抗劑均會抑制側根之形成。
  CoCl2處理亦可增加水稻側根數目,並提升HO的活性。從時間軸來看,HO活性的增加早於側根形成,暗示CoCl2可能是藉由影響HO活性上升,進而誘導側根形成。處理HO抑制劑ZnPPIX以及一氧化碳清除劑Hb會顯著降低CoCl2所增加HO活性及側根的數目。處理CoCl2不會增加H2O2含量,同時處理過氧化氫 (H2O2)清除劑ascorbic acid (AsA) 亦不影響CoCl2誘導的HO活性及側根數目,指出CoCl2所造成之影響與活化氧族 (reactive oxygen species)無關。
zh_TW
dc.description.abstractIn this thesis, the role of nitric oxide (NO), heme oxygenase (HO) and Ca2+ in regulating methyl jasmonate (MJ)-induced lateral roots (LR) formation in rice cultivar TN1 (Oryza sativa L. cv. Taichung Native 1) was examined. Also included in this thesis is the possible mechanism of CoCl2-promoted LR formation in rice.
Application of MJ to rice seedlings promoted LR formation and NO production. Treatment with MJ and NO specific scavenger carboxy-2-phenyl-4, 4, 5, 5- tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) reduced MJ-induced LR formation and NO production. NO was detected by the specific fluorescence probe, 4-amino-5- ethylamino-2’, 7’-difluoroflorescein diacetate (DAF-FM DA). NR inhibitor, sodium tungstates (Tu), completely inhibited MJ-induced LR formation and NO fluorescence. However, nitric oxide synthase (NOS) inhibitor, NG-nitro-L-arginine methyl ester hydrochloride (L-NAME) slightly reduced MJ-induced LR formation and NO generation, suggesting that NR activity is involved in MJ-increased NO production in rice roots. Moreover, the fluorescence of the longitudinal section of roots showed that NO production induced by MJ was localized in the LR primodia. It suggests that NO is a signal molecule involved in the regulation of MJ-induced LR formation.
MJ was able to increased rice seedlings HO activity. The time-course analyses of HO activity and LR formation clearly indicated that MJ-induced HO activity occurred before LR formation. Treatment with zinc protoporphyrinIX (ZnPPIX), an HO inhibitor, and hemoglobin (Hb), a CO scavenger, blocked MJ-induced LR formation and HO activity. Moreover, BV, another product of HO, also triggered LR development and HO activity. Pretreatment of Ca2+ chelators, channel blockers and camodulin antagonists inhibited MJ-promoted LR formation, but had no effect on MJ-induced HO activity.
Rice seedlings treated with CoCl2 also could promoted LR formation and HO activity. The time-course analyses of HO activity and LR formation clearly indicated that CoCl2-induced HO activity occurred before LR formation. ZnPPIX and Hb were able to reduced HO activity and the number of LR. CoCl2 (20 μM) had no effect on H2O2 production. Moreover, ascorbic acid (AsA) had no effect on CoCl2-induced HO activity and the LR number. It appears that reactive oxygen species (ROS) is not involved in the CoCl2-induced LR formation.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:11:21Z (GMT). No. of bitstreams: 1
ntu-101-R99621105-1.pdf: 1691737 bytes, checksum: 4ae4b66efee56dbaa56fee8993e0a163 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT v
目 錄 vii
圖目錄 ix
縮寫字對照表 xi
壹、前言 1
貳、前人研究 3
一、 水稻根系 3
二、 茉莉酸鹽 3
三、 一氧化氮 4
四、 Heme oxygenase 6
五、 鈷與植物生長 8
六、 鈣與植物生長 9
七、 本論文之研究方向 9
参、材料方法 10
一、 材料種植 10
二、 藥劑處理 10
三、 側根數目 11
四、 一氧化氮螢光顯像偵測 11
五、 HO活性分析 12
六、 過氧化氫含量之測定 13
七、 供試藥劑之配製 13
八、 統計分析 13
肆、結果 14
一、 MJ對水稻黃化幼苗側根形成之影響 14
(一) 不同濃度 MJ對水稻黃化幼苗側根形成之影響 14
(二) MJ誘導水稻黃化幼苗側根之形成需要NO之參與 14
(三) MJ與Hm對水稻黃化幼苗側根數目及heme oxygenase (HO)活性變化之影響 20
(四) cPTIO、NO合成抑制劑、ZnPPIX、Hb與BV對MJ與Hm誘導水稻黃化幼苗側根形成與HO活性之影響 20
(五) Ca2+與MJ和Hm對水稻黃化幼苗側根形成之關係 26
二、 氯化鈷對水稻黃化幼苗側根形成之調控 34
(一) CoCl2對水稻黃化幼苗側根形成與HO活性之影響 34
(二) CoCl2對水稻黃化幼苗側根形成與HO活性之影響與H2O2無關 37
伍、討論 41
一、 MJ對水稻黃化幼苗側根形成之影響 41
二、 氯化鈷對水稻黃化幼苗側根形成之調控 45
三、 未來研究方向 47
陸、引用文獻 48
dc.language.isozh-TW
dc.subject側根zh_TW
dc.subject水稻zh_TW
dc.subject血紅素氧化酵素zh_TW
dc.subject氯化鈷zh_TW
dc.subject鈣zh_TW
dc.subject一氧化氮zh_TW
dc.subject甲基茉莉酸鹽zh_TW
dc.subjectOryza sativaen
dc.subjectcobalt chlorideen
dc.subjectheme oxygenaseen
dc.subjectlateral rooten
dc.subjectmethyl jasmonateen
dc.subjectnitric oxideen
dc.subjectcalciumen
dc.title水稻側根形成之研究:甲基茉莉酸鹽與氯化鈷之效應zh_TW
dc.titleStudies on lateral root formation in rice: the effects of methyl jasmonate and cobalt chlorideen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳宗禮(Tsung-Li Chen),王恆隆(Heng-Long Wang),洪傳揚(Chwan-Yang Hong),許奕婷(Yi-Ting Hsu)
dc.subject.keyword鈣,氯化鈷,血紅素氧化酵素,側根,甲基茉莉酸鹽,一氧化氮,水稻,zh_TW
dc.subject.keywordcalcium,cobalt chloride,heme oxygenase,lateral root,methyl jasmonate,nitric oxide,Oryza sativa,en
dc.relation.page56
dc.rights.note有償授權
dc.date.accepted2012-07-12
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農藝學研究所zh_TW
顯示於系所單位:農藝學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
1.65 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved