請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65767完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃美嬌 | |
| dc.contributor.author | Pi-Yueh Chuang | en |
| dc.contributor.author | 莊璧躍 | zh_TW |
| dc.date.accessioned | 2021-06-17T00:11:18Z | - |
| dc.date.available | 2012-07-27 | |
| dc.date.copyright | 2012-07-27 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-07-12 | |
| dc.identifier.citation | [1] H. J. Goldsmid, Introduction to Thermoelectricity, 1 ed.: Springer, 2009.
[2] A. F. Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling. London: Infosearch Ltd, 1957. [3] G. Chen, M. S. Dresselhaus, G. Dresselhaus, J. P. Fleurial, and T. Caillat, 'Recent Developments in Thermoelectric Materials,' International Materials Reviews, vol. 48, pp. 45-66, 2003. [4] G. S. Nolas, G. A. Slack, J. L. Cohn, and S. B. Schujman, 'The Next Generation of Thermoelectric Materials,' presented at the 17th International Conference on Thermoelectrics, 1998. [5] M. S. Dresselhaus, G. Chen, M. Y. Tang, R. G. Yang, H. Lee, D. Z. Wang, Z. F. Ren, J. P. Fleurial, and P.Gogna, 'New Directions for Low-Dimensional Thermoelectric Materials,' Advanced Materials, vol. 19, pp. 1043-1053, 2007. [6] G. J. Snyder and E. S. Toberer, 'Complex Thermoelectric Materials,' Nature Materials, vol. 7, pp. 105-114, 2008. [7] T. E. Humphrey, M. F. O'Dwyer, and H. Linke, 'Power Optimization in Thermionic Devices,' Journal of Physics D: Applied Physics, vol. 38, pp. 2051-2054, 2005. [8] Y. I. Ravich, in CRC Handbook of Thermoelectrics, D. M. Rowe, Ed., ed: CRC Press, 1995, pp. 67-73. [9] C. Dames, 'Theoretical Phonon Thermal Conductivity of Si/Ge Superlattice Nanowires,' Journal of Applied Physics, vol. 95, p. 682, 2004. [10] R. Yang and G. Chen, 'Thermal Conductivity Modeling of Periodic Two-Dimensional Nanocomposites,' Physical Review B, vol. 69, 2004. [11] A. J. Minnich, M. S. Dresselhaus, Z. F. Ren, and G. Chen, 'Bulk Nanostructured Thermoelectric Materials: Current Research and Future Prospects,' Energy & Environmental Science, vol. 2, p. 466, 2009. [12] Y. Lan, A. J. Minnich, G. Chen, and Z. Ren, 'Enhancement of Thermoelectric Figure-of-Merit by a Bulk Nanostructuring Approach,' Advanced Functional Materials, vol. 20, pp. 357-376, 2010. [13] D. H. Kim and T. Mitani, 'Thermoelectric Properties of Fine-Grained Bi2Te3 Alloys,' Journal of Alloys and Compounds, vol. 399, pp. 14-19, 2005. [14] J. R. Sootsman, R. J. Pcionek, H. Kong, C. Uher, and M. G. Kanatzidis, 'Strong Reduction of Thermal Conductivity in Nanostructured PbTe Prepared by Matrix Encapsulation,' Chem. Mater., vol. 18, pp. 4993-4995, 2006. [15] C. H. Kuo, M. S. Jeng, J. R. Ku, S. K. Wu, Y. W. Chou, and C. S. Hwang, 'p-Type PbTe Thermoelectric Bulk Materials with Nanograins Fabricated by Attrition Milling and Spark Plasma Sintering,' Journal of Electronic Materials, vol. 38, pp. 1956-1961, 2009. [16] G. Joshi, H. Lee, Y. Lan, X. Wang, G. Zhu, D. Wang, R. W. Gould, D. C. Cuff, M. Y. Tang, M. S. Dresselhaus, G. Chen, and Z. Ren, 'Enhanced Thermoelectric Figure of Merit in Nanostructured p-Type Silicon Germanium Bulk Alloys,' Nano Letters, vol. 8, pp. 4670-4674, 2008. [17] X. W. Wang, H. Lee, Y. C. Lan, G. H. Zhu, G. Joshi, D. Z. Wang, J. Yang, A. J. Muto, M. Y. Tang, J. Klatsky, S. Song, M. S. Dresselhaus, G. Chen, and Z. F. Ren, 'Enhanced Thermoelectric Figure of Merit in Nanostructured n-Type Silicon Germanium Bulk Alloy,' Applied Physics Letters, vol. 93, p. 193121, 2008. [18] J. Martin, G. S. Nolas, W. Zhang, and L. Chen, 'PbTe Nanocomposites Synthesized from PbTe Nanocrystals,' Applied Physics Letters, vol. 90, p. 222112, 2007. [19] L. D. Zhao, B. P. Zhang, W. S. Liu, and J. F. Li, 'Effect of Mixed Grain Sizes on Thermoelectric Performance of Bi2Te3 Compound,' Journal of Applied Physics, vol. 105, p. 023704, 2009. [20] Y. Kinemuchi, H. Nakano, M. Mikami, K. Kobayashi, K. Watari, and Y. Hotta, 'Enhanced Boundary-Scattering of Electrons and Phonons in Nanograined Zinc Oxide,' Journal of Applied Physics, vol. 108, p. 053721, 2010. [21] D. Madan, A. Chen, P. K. Wright, and J. W. Evans, 'Dispenser Printed Composite Thermoelectric Thick Films for Thermoelectric Generator Applications,' Journal of Applied Physics, vol. 109, p. 034904, 2011. [22] C. B. Vining, W. Laskow, J. O. Hanson, R. R. V. d. Beck, and P. D. Gorsuch, 'Thermoelectric Properties of Pressure-Sintered Si0.8Ge0.2 Thermoelectric Alloys,' Journal of Applied Physics, vol. 69, p. 4333, 1991. [23] W. Kim, S. L. Singer, A. Majumdar, J. M. O. Zide, D. Klenov, A. C. Gossard, and S. Stemmer, 'Reducing Thermal Conductivity of Crystalline Solids at High Temperature Using Embedded Nanostructures,' Nano Letters, vol. 8, pp. 2097-2099, 2008. [24] B. Paul and P. Banerji, 'Grain Structure Induced Thermoelectric Properties in PbTe Nanocomposites,' Nanoscience and Nanotechnology Letters, vol. 1, pp. 208-212, 2009. [25] C. Bera, M. Soulier, C. Navone, G. Roux, J. Simon, S. Volz, and N. Mingo, 'Thermoelectric Properties of Nanostructured Si1−xGex and Potential for Further Improvement,' Journal of Applied Physics, vol. 108, p. 124306, 2010. [26] C. Papageorgiou, E. Hatzikraniotis, C. B. Lioutas, N. Frangis, O. Valassiades, K. M. Paraskevopoulos, and T. Kyratsi, 'Thermoelectric Properties of Nanocrystalline PbTe Synthesized by Mechanical Alloying,' Journal of Electronic Materials, vol. 39, pp. 1665-1668, 2010. [27] A. Popescu, A. Datta, G. S. Nolas, and L. M. Woods, 'Thermoelectric Properties of Bi-Doped PbTe Composites,' Journal of Applied Physics, vol. 109, p. 103709, 2011. [28] G. Chen, Nanoscale Energy Transport and Conversion. USA: Oxford University Press, 2005. [29] J. M. Ziman, Electrons and Phonons. USA: Oxford University Press, 2001. [30] P. Hyldgaard and G. D. Mahan, 'Phonon Knudsen Flow in GaAs/AlAs Superlattices,' Thermal Conductivity, vol. 23, pp. 171-182, 1996. [31] A. Balandin and K. L. Wang, 'Significant Decrease of the Lattice Thermal Conductivity Due to Phonon Confinement in a Free-Standing Semiconductor Quantum Well,' Physical Review B, vol. 58, pp. 1544-1549, 1998. [32] A. Khitun, A. Blandin, and K. L. Wang, 'Modification of the Lattice Thermal Conductivity in Silicon Quantum Wires Due to Spatial Confinement of Acoustic Phonons,' Superlattices and Microstructures, vol. 26, pp. 181-193, 1999. [33] J. Zou and A. Balandin, 'Phonon Heat Conduction in a Semiconductor Nanowire,' Journal of Applied Physics, vol. 89, p. 2932, 2001. [34] G. Chen, 'Size and Interface Effects on Thermal Conductivity of Superlattices and Periodic Thin-Film Structures,' Journal of Heat Transfer, vol. 119, p. 220, 1997. [35] G. Chen, 'Thermal Conductivity and Ballistic-Phonon Transport in the Cross-Plane Direction of Superlattices,' Physical Review B, vol. 57, pp. 14958-14973, 1998. [36] M. J. Huang, W. Y. Chong, and T. M. Chang, 'The Lattice Thermal Conductivity of a Semiconductor Nanowire,' Journal of Applied Physics, vol. 99, p. 114318, 2006. [37] M. J. Huang, T. M. Chang, W. Y. Chong, C. K. Liu, and C. K. Yu, 'A New Lattice Thermal Conductivity Model of a Thin-Film Semiconductor,' International Journal of Heat and Mass Transfer, vol. 50, pp. 67-74, 2007. [38] 黃美嬌, 劉又維, 張泰鳴, and 鐘文彥, '超晶格薄膜熱電控溫元件奈米效應評估,' 工研院結案報告, 94-S-A46. [39] 劉又維, '超晶格薄膜平面方向晶格熱傳導係數之分析,' 碩士, 臺灣大學機械工程學研究所學位論文, 臺灣大學, 2006. [40] A. Minnich, H. Lee, X. Wang, G. Joshi, M. S. Dresselhaus, Z. Ren, G. Chen, and D. Vashaee, 'Modeling Study of Thermoelectric SiGe Nanocomposites,' Physical Review B, vol. 80, 2009. [41] N. Mingo, D. Hauser, N. P. Kobayashi, M. Plissonnier, and A. Shakouri, ''Nanoparticle in Alloy' Approach to Efficient Thermoelectrics: Silicides in SiGe,' Nano Letters, vol. 9, pp. 711-715, 2009. [42] C. Kang, H. Kim, S. G. Park, and W. Kim, 'Comparison of Thermal Conductivity in Nanodot Nanocomposites and Nanograined Nanocomposites,' Applied Physics Letters, vol. 96, p. 213114, 2010. [43] W. Kim and A. Majumdar, 'Phonon Scattering Cross Section of Polydispersed Spherical Nanoparticles,' Journal of Applied Physics, vol. 99, p. 084306, 2006. [44] J. Callaway, 'Model for Lattice Thermal Conductivity at Low Temperatures,' Physical Review, vol. 113, pp. 1046-1051, 1959. [45] S. David, 'The Effective Medium Approximations: Some Recent Developments,' Superlattices and Microstructures, vol. 23, pp. 567-573, 1998. [46] R. Landauer, 'The Electrical Resistance of Binary Metallic Mixtures,' Journal of Applied Physics, vol. 23, p. 779, 1952. [47] D. P. H. Hasselman and L. F. Johnson, 'Effective Thermal Conductivity of Composites with Interfacial Thermal Barrier Resistance,' Journal of Composite Materials, vol. 21, pp. 508-515, 1987. [48] Y. Benveniste, 'Effective Thermal Conductivity of Composites with a Thermal Contact Resistance Between the Constituents: Nondilute Case,' Journal of Applied Physics, vol. 61, p. 2840, 1987. [49] C. W. Nan, R. Birringer, D. R. Clarke, and H. Gleiter, 'Effective Thermal Conductivity of Particulate Composites with Interfacial Thermal Resistance,' Journal of Applied Physics, vol. 81, p. 6692, 1997. [50] A. Minnich and G. Chen, 'Modified Effective Medium Formulation for the Thermal Conductivity of Nanocomposites,' Applied Physics Letters, vol. 91, p. 073105, 2007. [51] J. Ordonez-Miranda, R. Yang, and J. J. Alvarado-Gil, 'On the Thermal Conductivity of Particulate Nanocomposites,' Applied Physics Letters, vol. 98, p. 233111, 2011. [52] S. J. Poon and K. Limtragool, 'Nanostructure Model of Thermal Conductivity for High Thermoelectric Performance,' Journal of Applied Physics, vol. 110, p. 114306, 2011. [53] Q. Hao, 'Effective Medium Formulation for Phonon Transport Analysis of Nanograined Polycrystals,' Journal of Applied Physics, vol. 111, p. 014307, 2012. [54] X. G. Liang and X. Ji, 'Thermal Conductance of Randomly Oriented Composites of Thin Layers,' International Journal of Heat and Mass Transfer, vol. 43, pp. 3633-3640, 2000. [55] A. Majumdar, 'Microscale Heat Conduction in Dielectric Thin Films,' Journal of Heat Transfer, vol. 115, pp. 7-16, 1993. [56] T. Y. Hsieh and J. Y. Yang, 'Thermal Conductivity Modeling of Circular-Wire Nanocomposites,' Journal of Applied Physics, vol. 108, p. 044306, 2010. [57] P. Lee, R. Yang, and K. Maute, 'An Extended Finite Element Method for the Analysis of Submicron Heat Transfer Phenomena,' in Multiscale Methods in Computational Mechanics, R. d. Borst and E. Ramm, Eds., ed: Springer, 2011, pp. 195-212. [58] R. A. Escobar and C. H. Amon, 'Thin Film Phonon Heat Conduction by the Dispersion Lattice Boltzmann Method,' Journal of Heat Transfer, vol. 130, p. 092402, 2008. [59] 蔡東峻, '奈米複合材料聲子傳輸現象蒙地卡羅模擬法之研發,' 碩士, 臺灣大學機械工程學研究所學位論文, 台灣大學, 2009. [60] M. J. Huang, T. C. Tsai, L. C. Liu, M. S. Jeng, and C. C. Yang, 'A Fast Monte-Carlo Solver for Phonon Transport in Nanostructured Semiconductors,' CMES, vol. 42, pp. 107-129, 2009. [61] 康庭瑜, '尺寸效應對矽鍺材料熱傳現象影響之研究,' 碩士, 臺灣大學機械工程學研究所學位論文, 台灣大學, 2010. [62] M. S. Jeng, R. Yang, and G. Chen, 'Monte Carlo Simulation of Thermoelectric Properties in Nanocomposites,' presented at the 2005 International Conference on Thermoelectrics, 2005. [63] M. S. Jeng, R. Yang, D. Song, and G. Chen, 'Modeling the Thermal Conductivity and Phonon Transport in Nanoparticle Composites Using Monte Carlo Simulation,' Journal of Heat Transfer, vol. 130, p. 042410, 2008. [64] W. Tian and R. Yang, 'Phonon Transport and Thermal Conductivity Percolation in Random Nanoparticle Composites,' CMES, vol. 24, pp. 123-141, 2008. [65] Q. Hao, G. Zhu, G. Joshi, X. Wang, A. Minnich, Z. Ren, and G. Chen, 'Theoretical Studies on the Thermoelectric Figure of Merit of Nanograined Bulk Silicon,' Applied Physics Letters, vol. 97, p. 063109, 2010. [66] Q. Hao, 'Influence of Structure Disorder on the Lattice Thermal Conductivity of Polycrystals: A Frequency-Dependent Phonon-Transport Study,' Journal of Applied Physics, vol. 111, p. 014309, 2012. [67] M. J. Huang, T. C. Tsai, and L. C. Liu, 'A Study of Phonon Transport in Si/Ge Superlattice Thin Films Using a Fast MC Solver,' Journal of Electronic Materials, vol. 39, pp. 1875-1879, 2010. [68] M. J. Huang and P. Y. Chuang, 'An Investigation into the Lattice Thermal Conductivity of Random Nanowire Composites,' International Journal of Heat and Mass Transfer, vol. 55, pp. 3704-3712, 2012. [69] R. B. Peterson, 'Direct Simulation of Phonon-Mediated Heat Transfer in Debye Crystal,' Journal of Heat Transfer, vol. 116, p. 815, 1994. [70] http://www.ioffe.rssi.ru/SVA/NSM/Semicond/. [71] C. J. Glassbrenner and G. A. Slack, 'Thermal Conductivity of Silicon and Germanium from 3K to Melting Point,' Physical Review, vol. 134, pp. A1058-A1069, 1964. [72] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, 'The Quickhull Algorithm for Convex Hulls,' ACM Transcations on Mathmatical Software, vol. 22, pp. 469-483, 1996. [73] Q. Hao, G. Chen, and M. S. Jeng, 'Frequency-Dependent Monte Carlo Simulations of Phonon Transport in Two-Dimensional Porous Silicon with Aligned Pores,' Journal of Applied Physics, vol. 106, p. 114321, 2009. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65767 | - |
| dc.description.abstract | 本論文主要的研究目的乃是了解並預測奈米顆粒複合物之晶格熱傳導係數隨顆粒尺寸及成分比例變化之情形。為了此一目的,我們分別從數值模擬及理論兩方面提出及建立預測工具,兩者並互相驗證以確定其可靠度及準確性。
數值方面我們使用沃羅諾伊圖來建立具有不規則多面體奈米顆粒之複合物的3D數值模擬模型,以求更接近真實材料。為了能夠模擬如此複雜的不規則結構,我們開發運用3D非結構性網格的聲子蒙地卡羅模擬工具 (MC),使之能夠模擬聲子在具複雜結構之材料內的傳輸現象,並進而計算出材料的等效熱傳導係數。此蒙地卡羅法在本質散射部分使用單一鬆弛時間近似法,而在聲子性質上則使用灰介質假設。 在理論方面,我們首先提出一種EMA理論模型,其能用來預測鑲嵌奈米顆粒之複合材料之等效熱傳導係數,該奈米顆粒濃度可為任意值;而當顆粒濃度為100%時,即複合物完全由單一材料製成的顆粒所組成。接著我們將此EMA模型與三鍵結滲透理論結合,可用來預測由兩種不同材料的奈米顆粒混合而成之複合物其熱傳導係數隨成分比例之變化情形。 文中以純矽、純鍺、及混合矽鍺奈米顆粒複合物進行探討驗證。結果顯示理論模型及MC模擬之預測非常吻合,其中又以使用介面密度來定義之等效顆粒直徑所得到的理論值與模擬結果最為吻合,這也驗證了介面密度主導了奈米複合物熱傳導係數這一論點。惟目前理論模型與模擬工具皆尚未能考慮聲子散射率及介面穿透率的頻率相依性,故僅適用於顆粒等效直徑小於聲子淨平均自由路徑或熱傳主要由短平均自由路徑之聲子所貢獻時之材料預測上。 | zh_TW |
| dc.description.provenance | Made available in DSpace on 2021-06-17T00:11:18Z (GMT). No. of bitstreams: 1 ntu-101-R99522120-1.pdf: 8033298 bytes, checksum: ea2e534ad32a223dc9fc3be72adae9e1 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
中文摘要 ii 英文摘要 iii 表目錄 viii 圖目錄 ix 第一章 緒論 1 1-1 文獻回顧 1 1-2 研究動機及目的 7 1-3 論文架構 8 第二章 3D非結構性網格聲子蒙地卡羅法 9 2-1 基本理論 9 2-1-1 聲子波茲曼傳輸方程式 9 2-1-2 灰介質假設 10 2-1-3 介面穿透模型 11 2-2 聲子性質初始化 13 2-3 主程式 14 2-3-1 聲子位移與本質散射 14 2-3-2 介面散射 15 2-3-3 邊界條件與邊界熱流控制 16 2-3-4 能量守恆及網格性質資料更新 20 2-3-5 主程式流程與平行化 21 2-4 後處理 22 2-5 程式驗證 23 2-5-1 暫態熱擴散問題 23 2-5-2 塊材熱傳導係數模擬 24 2-5-3 超晶格薄膜垂直與平行平面熱傳導係數 25 2-5-4 超晶格薄膜斜向熱傳導係數 27 第三章 奈米顆粒複合材料熱傳導係數理論預測模型 28 3-1 稀薄EMA模型 28 3-2 高濃度EMA模型 30 3-3 尺寸效應下高濃度EMA模型 33 3-4 兩種不同材料顆粒混合EMA模型 35 3-5 等效顆粒直徑定義 36 第四章 奈米顆粒複合物熱傳導係數 39 4-1 幾何模型與網格劃分 39 4-1-1 沃羅諾伊圖 39 4-1-2 沃羅諾伊顆粒複合物模型 40 4-1-3 網格與模型驗證 41 4-2 純矽與純鍺奈米顆粒複合物 42 4-3 混合矽/鍺奈米顆粒複合物 46 第五章 結論與未來展望 49 5-1 結論 49 5-1-1 數值模擬工具 49 5-1-2 奈米顆粒複合物理論預測模型 49 5-1-3 純矽、純鍺、及混合矽/鍺奈米顆粒複合物熱傳導係數 50 5-2 未來展望 50 參考文獻 52 | |
| dc.language.iso | zh-TW | |
| dc.subject | 三鍵結滲透理論 | zh_TW |
| dc.subject | 沃羅諾伊圖奈米顆粒 | zh_TW |
| dc.subject | 非結構性網格 | zh_TW |
| dc.subject | 晶格熱傳導係數 | zh_TW |
| dc.subject | 蒙地卡羅法 | zh_TW |
| dc.subject | EMA模型 | zh_TW |
| dc.subject | Lattice thermal conductivity | en |
| dc.subject | Voronoi nanograins | en |
| dc.subject | Monte-Carlo simulation | en |
| dc.subject | EMA model | en |
| dc.subject | three-bond percolation theory | en |
| dc.title | 不規則奈米顆粒複合物熱傳導性質研究 | zh_TW |
| dc.title | Model and Numerical Predictions of the Thermal Conductivity of 3D Random Nanoparticle Composites | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊照彥,周雅文 | |
| dc.subject.keyword | 晶格熱傳導係數,沃羅諾伊圖奈米顆粒,非結構性網格,蒙地卡羅法,EMA模型,三鍵結滲透理論, | zh_TW |
| dc.subject.keyword | Lattice thermal conductivity,Voronoi nanograins,Monte-Carlo simulation,EMA model,three-bond percolation theory, | en |
| dc.relation.page | 85 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-07-12 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 7.85 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
