請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65764完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊台鴻(Tai-Horng Young) | |
| dc.contributor.author | Junichi Yoriki | en |
| dc.contributor.author | 余力純一 | zh_TW |
| dc.date.accessioned | 2021-06-17T00:11:15Z | - |
| dc.date.available | 2012-07-19 | |
| dc.date.copyright | 2012-07-19 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-07-13 | |
| dc.identifier.citation | Reference
1. Hideyuki Koga and Takeshi Muneta et al. Synovial stem cells are regionally specified according to local microenvironments after implantation for cartilage regeneration. Stem Cells. 2007; 25: 689-96 2. Jiabing Fan, M. D., Rohan R. et al. Synovium-derived mesenchymal stem cells: A new cell source for musculoskeletal regeneration. Tissue Engineering. 2009; 15: 75-86 3. Jeanie L. Drury, David J. Mooney. Hydrogel for tissue engineering: scaffold design variables and applications. Biomaterials 2003; 4337-4351. 4. Rubin, C., Bolander, M ., Ryaby, J.P., and Hadjiargyrou, M. The use of low- intensity ultrasound to accelerate the healing of fractures. J. Bone Joint Surg. Am. 2001; 83, 259-270. 5. Wang, S.J., Lewallen, D.G. et al. Low intensity ultrasound treatment increases strength in rat femoral fracture model. J. Orthop Res. 1994; 12, 40-47. 6. K. Ebisawa and Ken-Ichiro Hata et al. Ultrasound enhances transforming growth factor beta-mediated chondrocyte differemtiation of human mesenchymal stem cell. Tissue Engineering 2004; 10: 921-929 7. Nishikori, T., Ochi, M., Uchio, Y., Maniwa, S., Kataoka et al. Effects of low-intensity pulsed ultrasound on proliferation and chondroitin sulfate synthesis of cultured chondrocytes embedded in atelocollagen gel. J. Biomed. Master. Res. 59, 210-216 8. Bahar Bilgen and Yuexin Ren et al. CD14-Negative Isolation enhances chondrogenesis in synovial fibroblasts. Tissue Engineering 2009; 15: 3261-3270 9. BH Min, and BH Choi et al. Low intensity ultrasound as a supporter of cartilage regeneration and its engineering. Biotechnology and Bioprocess Engineering. 2007; 12: 22-31. 10. Dalecki. et al. Mechanical bioeffects of ultrasound. Annu. Rev. Biomed. Eng. 2004; 6: 229-248. 11. Feril, L. and T. Kondo Biological. Effects of low intensity ultrasound: the mechanism involved, and its implications on therapy and on biosafety of ultrasound. J Radiat. Res. 2004; 45: 479-489. 12. Parvizi, J. and M.E. Bolander. et al Low-intensity ultrasound stimulates proteoglycan synthesis in rat chondrocytes by increasing aggrecan gene expression. J. Orthop. Res 2001; 17: 488-494 13. Deng, C. X., F. Sieling, H. Pan, and J. Cui et al. Ultrasound-induced cell membrane porosity. Ultrasound Med. Biol. 2004; 30: 519-526. 14. Aparna S., and Sundararajan V.M. Characterization of chitosan- polycaprolactone blends for tissue engineering applications. Biomaterials. 2005; 26: 5500-5508. 15. Bonassar L.J. and Vacanti C.A. Tissue engineering: The first decade and beyond. Journal of cellular biochemistry supplement. 1998; 30/31: 297-303. 16. Duarte, L. R et al. The stimulation of bone growth by ultrasound. Arch. Orthop. Trauma Surg. 1983; 101: 153-159. 17. Hadjiargyrou, M., K. McLeod, J. P. Ryaby, and C. Rubin Enhancement of fracture healing by low intensity ultrasound. Clin. Orthop. Relat. Res. 1998; 355: S216-5249. 18. Heckman, J. D., J. P. Ryaby, J. McCabe, J. J. Frey, and R. F. Kilcoyne Acceleration of tibial fracture healing by non-invasive, low-intensity pulsed ultrasound. J. Bone Joint Surg. Am.1994; 76: 26-34. 19. Pilla, A. A., M. A. Mont, P. R. Nasser, S. A. Khan, M. Figueiredo, J. J. Kaufman, and R. S. Siffert et al. Non invasive low-intensity pulsed ultrasound accelerates bone healing in the rabbit. J. Orthop. Trauma. 1990; 4: 246-253. 20. Wiltink, A., P. J. Nijweide, W. A. Oosterbaan, R. T. Hekkenberg, and P. J. M. Helders et al. Effect of therapeutic ultrasound on endochondral ossification. Ultrasoound Me. Biol . 1995; 21: 121-127. 21. Alan D.M., Lisa M.G., and Matthew P.A. et al. Chondrogenic differentiation of human bone marrow stem cells in transwell cultures: generation of scaffold-free cartilage. Stem cells. 2007; 25: 2786-2796. 22. Rantanen, J., O. Thorsson, P. Wollmer, T. Hurme et al. Effects of therapeutic ultrasound on the regeneration of skeletal myofibers after experimental muscle injury. Am. J. Sports Med. 1999; 27: 54-59. 23. Aaron R.K. and Ciombor D.M. Acceleration of experimental endochondral ossofocation by biophysical stimulation of the progenitor cell pool. J Orthop. Res. 1996; 14: 582-589. 24. Altman G.H, Horan R.L., Martin I., Farhadi J., Stark P.R.H., Volloch V., Richmond J.C. and Kaplan D.L. Cell differentiation by mechanical stress. The FASEB journal. 2001; 2: 270-272 25. Cook, S. D., S. L. Salkeld, L. S. Popich-Patron, J. P. Ryaby, D. G. Jones, and R. L. Barrack Improved cartilage repair after treatment with low-intensity pulsed ultrasound; 2001:391 Clin. Orthop. Relat. Res. 391 26. Galen B.S., and Rebecca Z. et al. Chitosan supports the initial attachment and spreading of osteoblasts preferentially over fibroblasts. Biomaterials. 2004; 25: 2075-2079. 27. Nieminen, H. J., S. Saarakkala, M. S. Laasanen, J. Hir vonen, J. S. Jurvelin, and J. Toyras Ultrasound attenuation in normal and spontaneously degenerated articular cartilage.2004; Ultrasound Med. Biol. 30: 493-500. 28. Hydrostatic pressure enhances chondrogenic differentiation of human bone stromal cells in osteochondrogenic medium. Annals of biomedical engineering. 2008; 36: 813-820. 29. B., Morimichi M., and Gonhyung K. et al. Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells in pellet cultural system. Experimental Hematology. 2004; 32: 502-509. 30. Park, S. R., K. W. Jang, S.-H. Park, H. S. Cho, C. Z. Jin, M. J. Choi, S. I. Chung, and B.-H. Min The effect of sonication on simulated osteoarthritis. Part I: Effects of 1 MHz ultrasound on uptake of hyaluronan into the rabbit synovium. Ultrasound Med. Biol. 2005; 31: 1551-1558. 31. Noel, D., D. Gazit, C. Bouquet, F. Apparailly, C. Bony, P. Plence, V. Millet, G. Turgeman, M. Perricaudet, J. Sany, and C. Jorgensen Short-term BMP-2 expression is sufficient for in vivo osteochondral differentiation of mesenchymal stem cells. Stem Cells 2004; 22: 74-85. 32. Pittenger, M. F., A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Douglas, J. D. Mosca, M. A. Moorman, D. W. Simonetti, S. Craig, and D. R. Marshak Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143-147. 33. Johnstone, B., T. M. Hering, A. I. Caplan, V. M. Goldberg, and J. U. Yoo In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp. Cell Res. 1999, 238: 265-272. 34. Ma, H. L., S. C. Hung, S. Y. Lin, Y. L. Chen, and W. H. Lo Chondrogenesis of human mesenchymal stem cells encapsulated in alginate beads. J. Biomed. Mater. Res. A 1999; 64: 273-281. 35. Mizuta, H., S. Kudo, E. Nakamura, Y. Otsuka, K. Takagi, and Y. Hiraki Active proliferation of mesenchymal cells prior to the chondrogenic repair response in rabbit full-thickness defects of articular cartilage. Osteoarthr. Cartil. 2004; 12: 586-596. 36. Indrawattana, N., G. Chen, M. Tadokoro, L. H. Shann, H. Ohgushi, T. Tateishi, J. Tanaka, and A. Bunyaratvej Growth factor combination for chondrogenic induction from human mesenchymal stem cell. Biochem. Biophys. Res. Commun. 2004; 320: 914-919 37. Mastrogiacomo, M., R. Cancedda, and R. Quatro Effect of different growth factors on the chondrogenic potential of human bone marrow stromal cells. Osteoarthr. Cartil. 9 Suppl A 2001; S36-S40 38. Angele, P., J. U. Yoo, C. Smith, J. Mansour, K. J. Jepsen, M. Nerlich, and B. Johnstone Cyclic hydrostatic pressure enhances the chondrogenic phenotype of human mesenchymal progenitor cells differentiated in vitro. J. Orthop. Res. 2003; 21: 451-457. 39. O’Driscoll, S. W., F. W. Keeley, and R. B. Salter Durability of regenerated articular cartilage produced by free autogenous periosteal grafts in major full-thickness defects in joint surfaces under the influence of continuous passive motion. A follow-up report at one year. J.Bone Joint Surg. Am.1988; 70: 595-606. 40. Wakitani, S., T. Goto, S. J. Pineda, R. G. Young, J. M. Mansour, A. I. Caplan, and V. M. Goldberg Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J. Bone Joint Surg. Am.1994, 76: 579-592. 41. Huang, C. Y., K. L. Hagar, L. E. Frost, Y. Sun, and H. S. Cheung Effects of cyclic compressive loading on chondrogenesis of rabbit bone-marrow derived mesenchymal stem cells. Stem Cells. 2004; 22: 313-323. 42. Ebisawa, K., K. Hata, K. Okada, K. Kimata, M. Ueda, S. Torii, and H. Watanabe Ultrasound enhances transforming growth factor beta-mediated chondrocyte differentiation of human mesenchymal stem cells. Tissue Eng. 2004; 10: 921-929. 43. Lee, H. J., B. H. Choi, B.-H. Min, Y. S. Son, and S. R. Park Low-intensity ultrasound stimulation enhances chondrogenic differentiation in alginate culture of mesenchymal stem cells. Artif. Organs 2006; 30: 707-715. 44. Cui, J. H., S. R. Park, K. Park, B. H. Choi, and B.-H. Min Preconditioning of mesenchymal stem cells with low-intensity ultrasound for cartilage formation in vivo. Tissue Eng.2007; 351-360 45. Cui, J. H., K. Park, S. R. Park, and B.-H. Min Effects of low-intensity ultrasound on chondrogenic differentiation of mesenchymal stem cells embedded in polyglycolic acid: an in vivo study. Tissue Eng. 2006; 12: 75-82 46. Mankin, H. J. The response of articular cartilage to mechanical injury. J. Bone Joint Surg. Am. 1982; 64: 460- 466. 47. Poole, A. R. An introduction to the pathophysi ology of osteoarthritis. Front. Biosci. 1999; 4: 662-670. 48. Ficat, R. P., C. Ficat, P. Gedeon, and J. B. Toussaint Spongialization: a new treatment for diseased patellae.Clin. Orthop. Relat. Res.2009; 144: 74-83. 49. Hangody, L., P. Feczko, L. Bartha, G. Bodo, and G. Kish Mosaicplasty for the treatment of articular defects of the knee and ankle. Clin. Orthop. Relat. Res.2001; 391 Suppl: S328-S336. 50. Muller, B. and D. Kohn Indication for and performance of articular cartilage drilling using the Pridie method. Orthopade 1999; 28: 4-10. 51. Brittberg, M., A. Lindahl, A. Nilsson, C. Ohlsson, O. Isaksson, and L. Peterson Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N. Engl. J. Med. 1994; 331: 889-895. 52. Peterson, L., T. Minas, M. Brittberg, A. Nilson, E. Sjogren-Jansson, and A. Lindahl Two- to 9-year outcome after autologous chondrocyte transplantation of the knee. Clin. Orthop. Relat. Res. 2000; 374: 212-234. 53. Hunziker, E. B. Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthr. Cartil. 2002; 10: 432-463. 54. Huang, M. H., R. C. Yang, H. J. Ding, and C. Y. Chai Ultrasound effect on level of stress proteins and arthritic histology in experimental arthritis. Arch. Phys. Med. Rehabil. 1999; 80: 551-556. 55. Park, S. R., S.-H. Park, K. W. Jang, H. S. Cho, J. H. Cui, H. J. An, M. J. Choi, S. I. Chung, and B.-H. Min The effect of sonication on simulated osteoarthritis. Part II: Alleviation of osteoarthritis pathogenesis by 1 MHz ultrasound with simultaneous hyaluronate injection. Ultrasound Med. Biol. 2005; 31: 1559-1566. 56. Dunia M., Garcia C., and Daniela F.C. et al. Blending polysaccharides with biodegradable polymer: structure and biological response of chitosan / polycaprolactone blends. Journal of biomedical materials research part B. 2008; 87: 544-554. 57. Ying N.W., Zheng Y., James H.P.H., and Hong W.O. et al. Cartilaginous ECM component-modification of the micro-bead culture system for chondrogenic differentiation of mesenchymal stem cells. Biomaterials. 2007; 28: 4056-4067. 58. T. Nakamura, and S. fujihara et al. Effects of low-intensity pulsed ultrasound o the expression and activity of hyaluronan synthase and hyaluronidase in IL-1 beta-stimulated synovial cells. Annals of biomedical engineering. 2010; 11: 3363-3370. 59. Shan hui Hsu. Guo shiang. and Susan yun Fan Lin et al. Enhaced chondrogenic differentiation potential of human gingival fibroblasts by spheroid formation on chitosan membrane. Tissue Engineering. 2010; 18: 67-79. 60. Harb, N., Archer, T.K., and Sato, N. The Rho-Rock-Myosin signaling axis determines cell-cell integrity of self-renewing pluripotent stem cells. PLoS One 2008 ; 3, e3001. 61. Ungrin, M.D., Joshi, C., Nica, A., Bauwens, C., and Zandstra, P.W. Reproducible, ultra high-throughput formation of multicellular organization from single cell suspensionderived human embryonic stem cell aggregates. PLoS One 2008; 3, e1565. 62. Duval, N., Gomes, D., Calaora, V., Calabrese, A., Meda, P., and Bruzzone, R. Cell coupling and Cx43 expression in embryonic mouse neural progenitor cells. J Cell Sci 2002; 115, 3241-3251. 63. Chen, R.S., Chen, Y.J., Chen, M.H., and Young, T.H. The behavior of rat tooth germ cells on poly (vinyl alcohol). Acta Biomaterialia; 2009: 1064-1074 64. Miyagawa, Y., Okita, H., Hiroyama, M., Sakamoto, R., Kobayashi, M., Nakajima, H., et al. A microfabricated scaffold induces the spheroid formation of human bone marrowderived marrow derived mesenchymal progenitor cells and promotes efficient adipogenic differentiation. Tissue Engneering; 2011: 17 513-521. 65. Quintana L and Nieden NIZ et al. Morphogenetic and regulatory mechanisms during developmental chondorgenesis: new paragrams for cartilage tissue engineering Tissue Engneering; 2009: 15 19-41 66. Lei Cao, and Guangwang Liu et al. The promotion of cartilage defect using adenovirous mediated Sox9 gene transfer of rabbit BMSCs. Biomaterials. 2011; 32: 3910-3920. 67. Van Beuningen HM and Glansbeek HL et al. Osteoarthritis-like changes in the murine knee joint resulting from intraarticular transforming growth factor beta injections. Osteoarthritis Cartilage. 2001; 8: 25-33. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65764 | - |
| dc.description.abstract | 現今已證明關節滑膜裡存在有間葉幹細胞。細胞與細胞之間的聯繫對間葉幹細胞的軟骨分化非常重要。滑膜細胞養在 TCPS 上的形態是類似纖維母細胞。細胞養在幾丁聚醣基材上的時候,細胞會聚集成球。養在幾丁聚醣的細胞在低強度超音波(LIUS)刺激的環境下,細胞聚集的情形更明顯。當滑膜細胞養在 TCPS 上的情況下不會有軟骨分化,但在幾丁聚醣上成球的細胞,如 Safranin O 染色所示,有軟骨分化的傾向。再來用LIUS刺激的細胞比養在幾丁聚醣更加強糖胺聚醣的表現。在本研究裡,測軟骨分化有關的基因表現。在培養時間點前面的時候,養在幾丁聚醣上或養在幾丁聚醣加LIUS,sox9 基因表現各增加了1.8倍和2.7倍。這些結果告訴我們LIUS刺激促進滑膜細胞透過 sox9 分化成軟骨細胞。 | zh_TW |
| dc.description.abstract | Synovial membrane has been shown to contain mesenchymal stem cells. It is very important for stem cells to control cell-cell interaction for chondrogenic induction. Synovial cells cultured on TCPS exhibit normal fibroblast-like morphology. Cells formed spheroids when cultured on chitosan-coated substrate. Cells cultured on chitosan under low-intensity ultrasound (LIUS) stimulation formed spheroids larger than that on chitosan alone. Synovial cells cultured on TCPS could not undergo chondrogenic differentiation but cells cultured on chitosan differentiated into chondrocytes due to their spheroid formation as assessed by Safranin O staining. Furthermore, LIUS (0.1 W, 1MHz, duty cycle 10 %) applied every day enhanced more GAGs expression than cultured on chitosan only. In this study, the expression of chondrogenesis marker genes was observed. Gene expression of sox9 was increased by 1.8 and 2.7 folds by cells cultured on chitosan alone and chitosan with LIUS stimulation, respectively at early stage of cell culture. These results indicate that LIUS enhances sox9 mediated chondrogenic differentiation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T00:11:15Z (GMT). No. of bitstreams: 1 ntu-101-R99543082-1.pdf: 1517311 bytes, checksum: d71c0990492307de8ed0858559e4ea72 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | Contents
Abstract I Contents III Figures V Tables VIIII Chapter 1. Introduction 1 Chapter 2. Backgorund 3 2-1 Cell Source (synovial membrane) 3 2-2 Effect of low-intensity ultrasound (LIUS) stimulation 4 2-2-1 What is low intensity ultraosund (LIUS) 4 2-2-2 Effcets of LIPUS on chondrogenesis of MSCs 5 2-2-3 Effects of LIUS on the in vivo catilage regeneration and osteoarthritis 7 2-3 Biomaterials 10 2-3-1 Chitosan 10 Chapter 3. Materials and Methods 12 3-1 Materials 12 3-2 Experiment apparatus 15 3-3 Preparation of solution 17 3-4 Preparation of biomaterials 19 3-5 Ultraosound stimulation 19 3-6 Cell isolation and culture 22 3-7 Gene expression: Real Time RT - PCR analysis 22 3-8 GAGs staining - Safranin O stain 23 Chapter 4. Results and Discussions 26 4-1 Selection of LIUS condition 26 4-2 Cell morphology 27 4-3 GAGs expression of synovial cells 28 4-4 Chondrogenic specific gene expression 29 Chapter 5. Conclusion 31 Reference 32 Appindex 40 | |
| dc.language.iso | en | |
| dc.subject | 低強度超音波 | zh_TW |
| dc.subject | 軟骨分化 | zh_TW |
| dc.subject | TGF-beta1 | zh_TW |
| dc.subject | sox9 | zh_TW |
| dc.subject | 滑膜細胞 | zh_TW |
| dc.subject | 幾丁聚醣 | zh_TW |
| dc.subject | chondrogenic differentiation | en |
| dc.subject | chitosan | en |
| dc.subject | low-intensity ultrasound (LIUS) | en |
| dc.subject | TGF-beta 1 | en |
| dc.subject | sox9 | en |
| dc.subject | synovial cells | en |
| dc.title | 低強度超音波對於滑膜細胞培養在幾丁聚醣基材上
軟骨分化之研究 | zh_TW |
| dc.title | Effects of low-intensity ultrasound (LIUS) on chondrogenic differentiation of synovial cells cultured on chitosan substrate | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 王至弘(Jyh-Horng Wang) | |
| dc.contributor.oralexamcommittee | 李亦淇 | |
| dc.subject.keyword | 低強度超音波,幾丁聚醣,滑膜細胞,sox9,TGF-beta1,軟骨分化, | zh_TW |
| dc.subject.keyword | low-intensity ultrasound (LIUS),chitosan,synovial cells,sox9,TGF-beta 1,chondrogenic differentiation, | en |
| dc.relation.page | 54 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-07-13 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 1.48 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
