Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65740
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃良得(Lean-Teik Ng)
dc.contributor.authorChun-Han Suen
dc.contributor.author蘇俊翰zh_TW
dc.date.accessioned2021-06-17T00:10:50Z-
dc.date.available2015-07-20
dc.date.copyright2012-07-20
dc.date.issued2012
dc.date.submitted2012-07-14
dc.identifier.citationAdachi, Y., M. Okazaki, N. Ohno, and T. Yadomae. 1994. Enhancement of cytokine
production by macrophages stimulated with (1→3)-β-D-glucan, grifolan (GRN),
isolated from Grifola frondosa. Biol. Pharm. Bull. 17:1554-1560.
Blau, K., and J.M. Halket. 1993. Handbook of derivatives for chromatography. 2nd ed.
Wiley, New York.
Brownlee, M. 2005. The pathobiology of diabetic complications. Diabetes
54:1615-1625.
Chau, C.F., C.H. Chen, and C.Y. Lin. 2004. Insoluble fiber-rich fractions derived from
Averrhoa carambola: hypoglycemic effects determined by in vitro methods.
Lebensm. -Wiss. Technol. 37:331-335.
Chen, G.T., X.M. Ma, S.T. Liu, Y.L. Liao, and G.Q. Zhao. 2012. Isolation, purification
and antioxidant activities of polysaccharides from Grifola frondosa. Carbohydr.
Polym. 89:61-66.
Chen, Y., and M.D. Barkley. 1998. Toward understanding tryptophan fluorescence in
proteins. Biochemistry 37:9976-9982.
Cheung, P.C.K. 2010. The nutritional and health benefits of mushrooms. Nutr. Bull.
35:292-299.
Chiba, S. 1997. Molecular mechanism in α-glucosidase and glucoamylase. Biosci.
Biotechnol. Biochem. 61:1233-1239.
Cui, F.J., Y. Li, Y.Y. Xu, Z.Q. Liu, D.M. Huang, Z.C. Zhang, and W.Y. Tao. 2007.
Induction of apoptosis in SGC-7901 cells by polysaccharide-peptide GFPS1b
from the cultured mycelia of Grifola frondosa GF9801. Toxicol. in Vitro
21:417-427.
Cushley, R.J., and J.D. Filipenko. 1976. 13C Fourier transform n.m.r.: XIII
reassignment of the 13C spectrum of ergosterol. Org. Magn. Reson. 8:308-309.
Deshpande, M.C., V. Venkateswarlu, R.K. Babu, and R.K. Trivedi. 2009. Design and
evaluation of oral bioadhesive controlled release formulations of miglitol,
intended for prolonged inhibition of intestinal α-glucosidases and enhancement
of plasma glucagon like peptide-1 levels. Int. J. Pharm. 380:16-24.
DOH, Department of Health. 2009. The prevalency of diabetes for men above 65 years
old reaches 28.5%, DOH urges to control body weight and do more exercise and
eat more vegetables. http://www.doh.gov.tw/CHT2006/DM/DM2_p01.aspx?class_no=25&now_fod_list_no=9009&level_no=2&doc_no=72195
Dong, H.Q., M. Li, F. Zhu, F.L. Liu, and J.B. Huang. 2012. Inhibitory potential of
trilobatin from Lithocarpus polystachyus Rehd against α-glucosidase and
α-amylase linked to type 2 diabetes. Food Chem. 130:261-266.
Dubois, M., K.A. Gilles, J.K. Hamilton, P.A. Rebers, and F. Smith. 1956. Colorimetric
method for determination of sugars and related substances. Anal. Chem.
28:350-356.
Esti, M., I. Benucci, K. Liburdi, and A.M.V. Garzillo. 2011. Effect of wine inhibitors on
free pineapple stem bromelain activity in a model wine system. J. Agric. Food
Chem. 59:3391-3397.
Fan, Y., X. Wu, M. Zhang, T. Zhao, Y. Zhou, L. Han, and L. Yang. 2011. Physical
characteristics and antioxidant effect of polysaccharides extracted by boiling
water and enzymolysis from Grifola frondosa. Int. J. Biol. Macromol.
48:798-803.
Fange, D., M. Lovmar, M.Y. Pavlov, and M. Ehrenberg. 2011. Identification of enzyme
inhibitory mechanisms from steady-state kinetics. Biochimie 93:1623-1629.
Florence, J.A., and B.F. Yeager. 1999. Treatment of type 2 diabetes mellitus. Am. Fam.
Physician 59:2835-2844, 2849-2850.
Fukushima, M., T. Ohashi, Y. Fujiwara, K. Sonoyama, and M. Nakano. 2001.
Cholesterol-lowering effects of maitake (Grifola frondosa) fiber, shiitake
(Lentinus edodes) fiber, and enokitake (Flammulina velutipes) fiber in rats. Exp.
Biol. Med. 226:758-765.
Germaine, K.A., S. Samman, C.G. Fryirs, P.J. Griffiths, S.K. Johnson, and K.J. Quail.
2008. Comparison of in vitro starch digestibility methods for predicting the
glycaemic index of grain foods. J. Sci. Food Agric. 88:652-658.
Greenfield, N.J. 2006. Using circular dichroism spectra to estimate protein secondary
structure. Nat. Protoc. 1:2876-2890.
Gu, C.Q., J. Li, and F.H. Chao. 2006. Inhibition of hepatitis B virus by D-fraction from
Grifola frondosa: Synergistic effect of combination with interferon-α in HepG2
2.2.15. Antiviral Res. 72:162-165.
Gu, C.Q., J.W. Li, F. Chao, M. Jin, X.W. Wang, and Z.Q. Shen. 2007. Isolation,
identification and function of a novel anti-HSV-1 protein from Grifola frondosa.
Antiviral Res. 75:250-257.
Halket, J.M., D. Waterman, A.M. Przyborowska, R.K. Patel, P.D. Fraser, and P.M.
Bramley. 2005. Chemical derivatization and mass spectral libraries in metabolic
profiling by GC/MS and LC/MS/MS. J. Exp. Bot. 56:219-243.
Han, C., and B. Cui. 2012. Pharmacological and pharmacokinetic studies with
agaricoglycerides, extracted from Grifola frondosa, in animal models of pain
and inflammation. Inflammation (in press).
Hanefeld, M. 1998. The role of acarbose in the treatment of non-insulin-dependent
diabetes mellitus. J. Diabetes Complicat. 12:228-237.
Hernández-Pérez, J.M., E. Cabré, L. Fluvià, Á. Motos, C. Pastor, A. Corominas, and
M.A. Gassull. 2002. Improved method for gas chromatographic-mass
spectrometric analysis of 1-13C-labeled long-chain fatty acids in plasma samples.
Clin. Chem. 48:906-912.
Hirsh, A.J., S.Y. Yao, J.D. Young, and C.I. Cheeseman. 1997. Inhibition of glucose
absorption in the rat jejunum: a novel action of α-D-glucosidase inhibitors.
Gastroenterology 113:205-211.
Hishida, I., H. Nanba, and H. Kuroda. 1988. Antitumor activity exhibited by orally
administered extract from fruit body of Grifola frondosa (maitake). Chem.
Pharm. Bull. 36:1819-1827.
Hong, L., M. Xun, and W. Wutong. 2007. Anti-diabetic effect of an α-glucan from fruit
body of maitake (Grifola frondosa) on KK-Ay mice. J. Pharm. Pharmacol.
59:575-582.
Horio, H., and M. Ohtsuru. 2001. Maitake (Grifola frondosa) improve glucose tolerance
of experimental diabetic rats. J. Nutr. Sci. Vitaminol. 47:57-63.
Hsieh, C., C.J. Liu, M.H. Tseng, C.T. Lo, and Y.C. Yang. 2006. Effect of olive oil on the
production of mycelial biomass and polysaccharides of Grifola frondosa under
high oxygen concentration aeration. Enzyme Microb. Tech. 39:434-439.
Hu, X., Y. Xiao, J. Wu, and L. Ma. 2011. Evaluation of polyhydroxybenzophenones as
α-glucosidase inhibitors. Arch. Pharm. 344:71-77.
Ito, K., Y. Masuda, Y. Yamasaki, Y. Yokota, and H. Nanba. 2009. Maitake beta-glucan
enhances granulopoiesis and mobilization of granulocytes by increasing G-CSF
production and modulating CXCR4/SDF-1 expression. Int. Immunopharmacol.
9:1189-1196.
Jiang, C.Q., M.X. Gao, and X.Z. Meng. 2003. Study of the interaction between
daunorubicin and human serum albumin, and the determination of daunorubicin
in blood serum samples. Spectrochim. Acta A 59:1605-1610.
Kabir, Y., M. Yamaguchi, and S. Kimura. 1987. Effect of shiitake (Lentinus edodes) and
maitake (Grifola frondosa) mushrooms on blood pressure and plasma lipids of
spontaneously hypertensive rats. J. Nutr. Sci. Vitaminol. 33:341-346.
Kang, W.Y., Y.L. Song, and L. Zhang. 2011. α-Glucosidase inhibitory and antioxidant
properties and antidiabetic activity of Hypericum ascyron L. Med. Chem. Res.
20:809-816.
Kim, Y.M., Y.K. Jeong, M.H. Wang, W.Y. Lee, and H.I. Rhee. 2005. Inhibitory effect of
pine extract on α-glucosidase activity and postprandial hyperglycemia.
Nutrition 21:756-761.
Kirsti, K. 1996. The characterization of some lipid metabolites of Gloeophyllum
odoratum grown in vitro. Mycol. Res. 100:23-26.
Kodama, N., K. Komuta, and H. Nanba. 2002a. Can maitake MD-fraction aid cancer
patients? Altern. Med. Rev. 7:236-239.
Kodama, N., N. Harada, and H. Nanba. 2002b. A polysaccharide, extract from Grifola
frondosa, induces Th-1 dominant responses in carcinoma-bearing BALB/c mice.
Jpn. J. Pharmacol. 90:357-360.
Kodama, N., K. Komuta, and H. Nanba. 2003. Effect of Maitake (Grifola frondosa)
D-fraction on the activation of NK cells in cancer patients. J. Med. Food
6:371-377.
Kodama, N., Y. Murata, and H. Nanba. 2004. Administration of a polysaccharide from
Grifola frondosa stimulates immune function of normal mice. J. Med. Food
7:141-145.
Kodama, N., K. Komuta, N. Sakai, and H. Nanba. 2002c. Effects of D-fraction, a
polysaccharide from Grifola frondosa on tumor growth involve activation of NK
cells. Biol. Pharm. Bull. 25:1647-1650.
Kodama, N., S. Mizuno, H. Nanba, and N. Saito. 2010. Potential antitumor activity of a
low-molecular-weight protein fraction from Grifola frondosa through
enhancement of cytokine production. J. Med. Food 13:20-30.
Kodama, N., A. Asakawa, A. Inui, Y. Masuda, and H. Nanba. 2005. Enhancement of
cytotoxicity of NK cells by D-fraction, a polysaccharide from Grifola frondosa.
Oncol. Rep. 13:497-502.
Konno, S. 2009. Synergistic potentiation of D-fraction with vitamin C as possible
alternative approach for cancer therapy. Int. J. Gen. Med. 2:91-108.
Konno, S., D.G. Tortorelis, S.A. Fullerton, A.A. Samadi, J. Hettiarachchi, and H. Tazaki.
2001. A possible hypoglycaemic effect of maitake mushroom on Type 2 diabetic
patients. Diabet. Med. 18:1010.
Krentz, A.J., and C.J. Bailey. 2005. Oral antidiabetic agents: Current role in type 2
diabetes mellitus. Drugs 65:385-411.
Kubo, K., and H. Nanba. 1997. Anti-hyperliposis effect of maitake fruit body (Grifola
frondosa). I. Biol. Pharm. Bull. 20:781-785.
Kubo, K., H. Aoki, and H. Nanba. 1994. Anti-diabetic activity present in the fruit body
of Grifola frondosa (Maitake). I. Biol. Pharm. Bull. 17:1106-1110.
Kuksis, A., J.J. Myher, L. Marai, and K. Geher. 1976. Estimation of plasma free fatty
acids as the trimethylsilyl (TMS) esters. Anal. Biochem. 70:302-312.
Kurushima, H., N. Kodama, and H. Nanba. 2000. Activities of polysaccharides obtained
from Grifola frondosa on insulin-dependent diabetes mellitus induced by
streptozotocin in mice. Mycoscience 41:473-480.
Kwon, Y.I., E. Apostolidis, Y.C. Kim, and K. Shetty. 2007. Health benefits of traditional
corn, beans, and pumpkin: in vitro studies for hyperglycemia and hypertension
management. J. Med. Food 10:266-275.
Lee, J.S., B.C. Park, Y.J. Ko, M.K. Choi, H.G. Choi, C.S. Yong, and J.A. Kim. 2008a.
Grifola frondosa (maitake mushroom) water extract inhibits vascular endothelial
growth factor-induced angiogenesis through inhibition of reactive oxygen
species and extracellular signal-regulated kinase phosphorylation. J. Med. Food
11:643-651.
Lee, J.S., H.S. Kim, Y.J. Lee, C.S. Yong, H.G. Choi, G.D. Han, J.A. Vim, and J.S. Lee.
2008b. Hepatoprotective effect of Grifola frondosa water extract on carbon
tetrachloride-induced liver injury in rats. Food Sci. Biotechnol. 17:203-207.
Lee, J.S., S.Y. Park, D. Thapa, M.K. Choi, I.M. Chung, Y.J. Park, C.S. Yong, H.G. Choi,
and J.A. Kim. 2010. Grifola frondosa water extract alleviates intestinal
inflammation by suppressing TNF-α production and its signaling. Exp. Mol.
Med. 42:143-154.
Lehninger, A.L., D.L. Nelson, and M.M. Cox. 2008. Lehninger principles of
biochemistry. 5th ed. W.H. Freeman, New York.
Li, Y., F. Gao, F. Shan, J. Bian, and C. Zhao. 2009a. Study on the interaction between 3
flavonoid compounds and α-amylase by fluorescence spectroscopy and
enzymatic kinetics. J. Food Sci. 74:C199-C203.
Li, Y., S. Wen, B.P. Kota, G. Peng, G.Q. Li, J. Yamahara, and B.D. Roufogalis. 2005.
Punica granatum flower extract, a potent α-glucosidase inhibitor, improves
postprandial hyperglycemia in Zucker diabetic fatty rats. J. Ethnopharmacol.
99:239-244.
Li, Y.Q., F.C. Zhou, F. Gao, J.S. Bian, and F. Shan. 2009b. Comparative evaluation of
quercetin, isoquercetin and rutin as inhibitors of α-glucosidase. J. Agric. Food
Chem. 57:11463-11468.
Lin, H., E. de Stanchina, X.K. Zhou, F. Hong, A. Seidman, M. Fornier, W.L. Xiao, E.J.
Kennelly, K. Wesa, B.R. Cassileth, and S. Cunningham-Rundles. 2010. Maitake
beta-glucan promotes recovery of leukocytes and myeloid cell function in
peripheral blood from paclitaxel hematotoxicity. Cancer Immunol. Immunother.
59:885-897.
Lindequist, U., T.H. Niedermeyer, and W.D. Julich. 2005. The pharmacological
potential of mushrooms. Evid. Based Complement. Alternat. Med. 2:285-299.
Liu, L., M.A. Deseo, C. Morris, K.M. Winter, and D.N. Leach. 2011a. Investigation of
α-glucosidase inhibitory activity of wheat bran and germ. Food Chem.
126:553-561.
Liu, L., Y. Li, C. Guan, K. Li, C. Wang, R. Feng, and C. Sun. 2010. Free fatty acid
metabolic profile and biomarkers of isolated post-challenge diabetes and type 2
diabetes mellitus based on GC-MS and multivariate statistical analysis. J.
Chromatogr. B 878:2817-2825.
Liu, M., W. Zhang, L. Qiu, and X. Lin. 2011b. Synthesis of butyl-isobutyl-phthalate and
its interaction with α-glucosidase in vitro. J. Biochem. 149:27-33.
Liu, X.F., Y.M. Xia, Y. Fang, L. Zou, and L.L. Liu. 2004. Interaction between natural
pharmaceutical homologues of coumarin and bovine serum albumin. Acta Chim.
Sinica 62:1484-1490.
Lo, H.C., T.H. Hsu, and C.Y. Chen. 2008. Submerged culture mycelium and broth of
Grifola frondosa improve glycemic responses in diabetic rats. Am. J. Chin. Med.
36:265-285.
Manohar, V., N.A. Talpur, B.W. Echard, S. Lieberman, and H.G. Preuss. 2002. Effects
of a water-soluble extract of maitake mushroom on circulating glucose/insulin
concentrations in KK mice. Diabetes Obes. Metab. 4:43-48.
Masuda, Y., Y. Murata, M. Hayashi, and H. Nanba. 2008. Inhibitory effect of
MD-fraction on tumor metastasis: Involvement of NK cell activation and
suppression of intercellular adhesion molecule (ICAM)-1 expression in lung
vascular endothelial cells. Biol. Pharm. Bull. 31:1104-1108.
Masuda, Y., K. Ito, M. Konishi, and H. Nanba. 2010. A polysaccharide extracted from
Grifola frondosa enhances the anti-tumor activity of bone marrow-derived
dendritic cell-based immunotherapy against murine colon cancer. Cancer
Immunol. Immunother. 59:1531-1541.
Masuda, Y., M. Inoue, A. Miyata, S. Mizuno, and H. Nanba. 2009a. Maitake β-glucan
enhances therapeutic effect and reduces myelosuppression and nephrotoxicity of
cisplatin in mice. Int. Immunopharmacol. 9:620-626.
Masuda, Y., A. Matsumoto, T. Toida, T. Oikawa, K. Ito, and H. Nanba. 2009b.
Characterization and antitumor effect of a novel polysaccharide from Grifola
frondosa. J. Agric. Food Chem. 57:10143-10149.
Matsuura, H., C. Asakawa, M. Kurimoto, and J. Mizutani. 2002. α-Glucosidase
inhibitor from the seeds of balsam pear (Momordica charantia) and the fruit
bodies of Grifola frondosa. Biosci. Biotechnol. Biochem. 66:1576-1578.
Mayell, M. 2001. Maitake extracts and their therapeutic potential. Altern. Med. Rev.
6:48-60.
Mizuno, T., and C. Zhuang. 1995. Maitake, Grifola frondosa: pharmacological effects.
Food Rev. Int. 11:135-149.
Mori, K., C. Kobayashi, T. Tomita, S. Inatomi, and M. Ikeda. 2008. Antiatherosclerotic
effect of the edible mushrooms Pleurotus eryngii (Eringi), Grifola frondosa
(Maitake), and Hypsizygus marmoreus (Bunashimeji) in apolipoprotein
E-deficient mice. Nutr. Res. 28:335-342.
Nagao, M., T. Sato, N. Akimoto, Y. Kato, M. Takahashi, and A. Ito. 2009. Augmentation
of sebaceous lipogenesis by an ethanol extract of Grifola frondosa (Maitake
mushroom) in hamsters in vivo and in vitro. Exp. Dermatol. 18:730-733.
Nanba, H. 1995. Activity of maitake D-fraction to inhibit carcinogenesis and metastasis.
Ann. N. Y. Acad. Sci. 768:243-245.
Nanba, H., A. Hamaguchi, and H. Kuroda. 1987. The chemical structure of an antitumor
polysaccharide in fruit bodies of Grifola frondosa (maitake). Chem. Pharm. Bull.
35:1162-1168.
Nanba, H., N. Kodama, D. Schar, and D. Turner. 2000. Effects of Maitake (Grifola
frondosa) glucan in HIV-infected patients. Mycoscience 41:293-295.
Niba, L.L. 2003. Processing effects on susceptibility of starch to digestion in some
dietary starch sources. Int. J. Food Sci. Nutr. 54:97-109.
Orhan, N., M. Aslan, B. Demirci, and F. Ergun. 2012. A bioactivity guided study on the
antidiabetic activity of Juniperus oxycedrus subsp. oxycedrus L. leaves. J.
Ethnopharmacol. 140:409-415.
Petitpas, I., T. Grune, A.A. Bhattacharya, and S. Curry. 2001. Crystal structures of
human serum albumin complexed with monounsaturated and polyunsaturated
fatty acids. J. Mol. Biol. 314:955-960.
Preuss, H.G., B. Echard, D. Bagchi, and N.V. Perricone. 2010. Maitake mushroom
extracts ameliorate progressive hypertension and other chronic metabolic
perturbations in aging female rats. Int. J. Med. Sci. 7:169-180.
Rosecke, J., and W.A. Konig. 2000. Constituents of the fungi Daedalea quercina and
Daedaleopsis confragosa var. tricolor. Phytochemistry 54:757-762.
Sato, M., Y. Tokuji, S. Yoneyama, K. Fujii-Akiyama, M. Kinoshita, and M. Ohnishi.
2011. Profiling of hepatic gene expression of mice fed with edible japanese
mushrooms by DNA microarray analysis: Comparison among Pleurotus
ostreatus, Grifola frondosa, and Hypsizigus marmoreus. J. Agric. Food Chem.
59:10723-10731.
Scazzina, F., D. Del Rio, N. Pellegrini, and F. Brighenti. 2009. Sourdough bread: Starch
digestibility and postprandial glycemic response. J. Cereal Sci. 49:419-421.
Schafer, A., and P. Hogger. 2007. Oligomeric procyanidins of French maritime pine
bark extract (Pycnogenol®) effectively inhibit α-glucosidase. Diabetes Res. Clin.
Pract. 77:41-46.
Schummer, C., O. Delhomme, B.M. Appenzeller, R. Wennig, and M. Millet. 2009.
Comparison of MTBSTFA and BSTFA in derivatization reactions of polar
compounds prior to GC/MS analysis. Talanta 77:1473-1482.
Segel, I.H. 1975. Enzyme kinetics: behavior and analysis of rapid equilibrium and
steady state enzyme systems. Wiley, New York.
Sgarbi, D.B., A.J. da Silva, I.Z. Carlos, C.L. Silva, J. Angluster, and C.S. Alviano. 1997.
Isolation of ergosterol peroxide and its reversion to ergosterol in the pathogenic
fungus Sporothrix schenckii. Mycopathologia 139:9-14.
Sheard, N.F., N.G. Clark, J.C. Brand-Miller, M.J. Franz, F.X. Pi-Sunyer, E.
Mayer-Davis, K. Kulkarni, and P. Geil. 2004. Dietary carbohydrate (amount and
type) in the prevention and management of diabetes: a statement by the
American Diabetes Association. Diabetes Care 27:2266-2271.
Shinde, J., T. Taldone, M. Barletta, N. Kunaparaju, B. Hu, S. Kumar, J. Placido, and
S.W. Zito. 2008. α-glucosidase inhibitory activity of Syzygium cumini (Linn.)
Skeels seed kernel in vitro and in Goto-Kakizaki (GK) rats. Carbohydr. Res.
343:1278-1281.
Shomori, K., M. Yamamoto, I. Arifuku, K. Teramachi, and H. Ito. 2009. Antitumor
effects of a water-soluble extract from Maitake (Grifola frondosa) on human
gastric cancer cell lines. Oncol. Rep. 22:615-620.
Sigma-Aldrich web site. 1997. BSTFA + TMCS Product Specification. http://www.sigmaaldrich.com/etc/medialib/docs/Aldrich/General_Information/bstfa_tmcs.Par.0001.File.tmp/bstfa_tmcs.pdf
Small, D.M. 1984. Lateral chain packing in lipids and membranes. J. Lipid Res.
25:1490-1500.
Soares, R., M. Meireles, A. Rocha, A. Pirraco, D. Obiol, E. Alonso, G. Joos, and G.
Balogh. 2011. Maitake (D-fraction) mushroom extract induces apoptosis in
breast cancer cells by BAK-1 gene activation. J. Med. Food 14:563-572.
Svagelj, M., M. Berovic, B. Boh, A. Menard, S. Simcic, and B. Wraber. 2008.
Solid-state cultivation of Grifola frondosa (Dicks: Fr) S.F. Gray biomass and
immunostimulatory effects of fungal intra- and extracellular β-polysaccharides.
N. Biotechnol. 25:150-156.
Talpur, N.A., B.W. Echard, A.Y. Fan, O. Jaffari, D. Bagchi, and H.G. Preuss. 2002.
Antihypertensive and metabolic effects of whole Maitake mushroom powder
and its fractions in two rat strains. Mol. Cell. Biochem. 237:129-136.
Wang, H., Y.J. Du, and H.C. Song. 2010. α-Glucosidase and α-amylase inhibitory
activities of guava leaves. Food Chem. 123:6-13.
Wang, L., C.L. Ha, T.L. Cheng, S.Y. Cheng, T.W. Lian, and M.J. Wu. 2008. Oral
administration of submerged cultivated Grifola frondosa enhances phagocytic
activity in normal mice. J. Pharm. Pharmacol. 60:237-243.
Wasser, S.P. 2002. Medicinal mushrooms as a source of antitumor and
immunomodulating polysaccharides. Appl. Microbiol. Biotechnol. 60:258-274.
Wasser, S.P. 2011. Current findings, future trends, and unsolved problems in studies of
medicinal mushrooms. Appl. Microbiol. Biotechnol. 89:1323-1332.
Wei, J.N., F.C. Sung, J.N. Wei, C.W. Chou, C.Y. Li, M.S. Tsuang, P.J. Wang,
C.W. Chou, J.N. Tung, and L.M. Chuang. 2002. Comparison in diabetes-related
complications for inpatients among university medical centers, regional
hospitals and district hospitals. Taiwan J. Public Health 21:115-122.
WHO, World Health Organization. 1999. Definition, diagnosis and classification of diabetes mellitus and its complications. http://whqlibdoc.who.int/hq/1999/WHO_NCD_NCS_99.2.pdf
WHO, World Health Organization. 2006. Definition and diagnosis of diabetes mellitus and intermediate hyperglycemia. http://www.who.int/diabetes/publications/Definition%20and%20diagnosis%20of%20diabetes_new.pdf
WHO, World Health Organization. 2011. Diabetes. http://www.who.int/mediacentre/factsheets/fs312/en/
Yang, B.K., Y.A. Gu, Y.T. Jeong, H. Jeong, and C.H. Song. 2007. Chemical
characteristics and immuno-modulating activities of exo-biopolymers produced
by Grifola frondosa during submerged fermentation process. Int. J. Biol.
Macromol. 41:227-233.
Yang, F.Q., K. Feng, J. Zhao, and S.P. Li. 2009. Analysis of sterols and fatty acids in
natural and cultured Cordyceps by one-step derivatization followed with gas
chromatography-mass spectrometry. J. Pharm. Biomed. Anal. 49:1172-1178.
Yeh, J.Y., L.H. Hsieh, K.T. Wu, and C.F. Tsai. 2011. Antioxidant properties and
antioxidant compounds of various extracts from the edible basidiomycete
Grifola frondosa (Maitake). Molecules 16:3197-3211.
Zhang, M., S.W. Cui, P.C.K. Cheung, and Q. Wang. 2007. Antitumor polysaccharides
from mushrooms: a review on their isolation process, structural characteristics
and antitumor activity. Trends Food Sci. Technol. 18:4-19.
Zhang, Y., G.L. Mills, and M.G. Nair. 2002. Cyclooxygenase inhibitory and antioxidant
compounds from the mycelia of the edible mushroom Grifola frondosa. J. Agric.
Food Chem. 50:7581-7585.
Zhou, Y.Q., Z.J. Wang, and N. Jia. 2007. Formation of multiple trimethylsilyl
derivatives in the derivatization of 17alpha-ethinylestradiol with BSTFA or
MSTFA followed by gas chromatography-mass spectrometry determination. J.
Environ. Sci. 19:879-884.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65740-
dc.description.abstract舞菇 (Grifola frondosa;GF) 為傳統上用來促進免疫功能及治療糖尿病之藥用真菌。第二型糖尿病為最普遍的慢性病之一,而抑制其相關消化酶活性之抑制劑可降低餐後高血糖,具有預防或治療第二型糖尿病之功效。因此,本研究目的為:(1) 評估舞菇不同萃取物對第二型糖尿病相關消化酶 (α-澱粉酶及α-葡萄糖苷酶) 之抑制效果及鑑定其活性成分;(2) 探討舞菇活性成分對α-葡萄糖苷酶之抑制特性;及 (3) 利用模擬小腸環境模式分析舞菇活性成分對澱粉水解的影響。舞菇子實體不同萃取物及多醣體對α-澱粉酶及α-葡萄糖苷酶的抑制能力均以比色法進行測定。結果顯示,所有舞菇成分對α-澱粉酶之抑制效果皆不佳,但非極性成分 (GF-H 及GF-oil) 對α-葡萄糖苷酶則具有極佳之抑制效果。以氣相層析質譜儀分析得知,此非極性成分中之主要化合物為油酸 (IC50 = 0.0779 mM) 和亞麻油酸 (IC50 = 0.112 mM),兩者對α-葡萄糖苷酶具極佳之抑制活性,且抑制效果皆優於標準品acarbose (IC50 = 2.91 mM)。構效關係亦指出在不同脂肪酸中,油酸及亞麻油酸確實對α-葡萄糖苷酶具有較強之抑制能力。抑制動力學分析結果指出油酸和亞麻油酸皆屬於競爭型抑制劑,而螢光淬滅之實驗結果顯示其能和α-葡萄糖苷酶結合形成複合體,但圓二色光譜分析結果則指出油酸及亞麻油酸對α-葡萄糖苷酶之二級結構影響不大。另外,油酸和亞麻油酸在模擬小腸環境的透析模式中,可顯著降低澱粉水解率,代表其可延緩澱粉在小腸中的消化速率,進而降低餐後高血糖。本研究首次指出,屬於不飽和脂肪酸的油酸及亞麻油酸對α-葡萄糖苷酶活性具有極佳之抑制效果,故具開發為副作用較少之α-葡萄糖苷酶抑制劑的潛力,以用於預防或治療第二型糖尿病。zh_TW
dc.description.abstractGrifola frondosa (GF), also known as Wu-gu (舞菇), is a medicinal fungus traditionally used to enhance immune functions and for treating diabetes. Type 2 diabetes is one of the most common chronic diseases, and inhibitors for type 2 diabetes-related digestive enzymes which reduce postprandial hyperglycemia play a key role in preventing and treating type 2 diabetes. Therefore, the aims of this study were: (i) to evaluate the inhibitory effects of different GF components on type 2 diabetes-related digestive enzymes (α-amylase and α-glucosidase) and to identify their bioactive components; (ii) to investigate the α-glucosidase inhibitory characteristics of GF
bioactive components; and (iii) to examine the effects of GF bioactive components on starch hydrolysis in the simulated small intestine conditions. The inhibitory effects of different extracts, fractions, and polysaccharides of GF fruiting bodies on α-amylase and α-glucosidase were evaluated by in vitro colorimetric
methods. Results showed that all GF components exhibited weak inhibitory effects on α-amylase activity, whereas the non-polar components possessed good anti-α-glucosidase activity, with the strongest potency on this activity was noted on GF-H and GF-oil. GC-MS analysis showed that the bioactive components contained mainly of oleic acid (IC50 = 0.0779 mM) and linoleic acid (IC50 = 0.112 mM), which were found to possess potent anti-α-glucosidase activity, and were noted to be stronger than acarbose (IC50 = 2.91 mM). Structure-activity relationship study further confirmed
that among the different fatty acids, oleic acid and linoleic acid possessed the most potent inhibitory activity against α-glucosidase. Inhibition kinetics showed that oleic acid and linoleic acid were competitive inhibitors, and fluorescence quenching study showed that they would bind to α-glucosidase to form a complex, while the results of circular dichroism spectroscopy indicated that these inhibitors had little effects on the secondary structure of
α-glucosidase. In addition, oleic acid and linoleic acid significantly decreased the hydrolysis rate of starch in a dialysis model which mimics the small intestine conditions,
indicating that they could retard the digestion of starch in the small intestine and hence decrease the postprandial blood glucose level. This is the first report to show that unsaturated fatty acids oleic acid and linoleic acid possessed strong inhibitory effects on α-glucosidase activity, suggesting that they have the potential to be developed as new α-glucosidase inhibitors with less side effects for the treatment of type 2 diabetes.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:10:50Z (GMT). No. of bitstreams: 1
ntu-101-R99623001-1.pdf: 7054260 bytes, checksum: e200f6da1f619e7cee4c49be9a2c43ad (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsContent
口試委員會審定書 ........................................................................................................... I
誌謝 .................................................................................................................................. II
摘要 ................................................................................................................................ III
Abstract ........................................................................................................................... IV
Content ........................................................................................................................... VI
Figure content ................................................................................................................... X
Table content .................................................................................................................. XII
Chapter 1 Introduction ...................................................................................................... 1
1.1. Medicinal mushrooms and G. frondosa ............................................................. 3
1.2. Bioactive polysaccharides of G. frondosa ......................................................... 6
1.3. Pharmacological activities of G. frondosa ......................................................... 8
1.3.1. Immunomodulation ................................................................................ 8
1.3.2. Anti-cancer ............................................................................................. 8
1.3.3. Anti-hyperglycemia .............................................................................. 10
1.3.4. Anti-hyperlipidemia and anti-hypertension .......................................... 10
1.3.5. Anti-inflammation ................................................................................. 11
1.3.6. Anti-oxidation ........................................................................................ 11
1.3.7. Anti-virus, hepatoprotection, and modulation of sebaceous
lipogenesis ............................................................................................ 12
1.4. Diabetes mellitus ............................................................................................. 13
1.4.1. Classification ........................................................................................ 13
1.4.2. Treatments of type 2 diabetes ............................................................... 14
Chapter 2 Inhibitory effects of G. frondosa components on type 2 diabetes-related digestive enzymes and identification of their bioactive components ............ 18
2.1. Introduction ..................................................................................................... 18
2.2. Materials and methods ..................................................................................... 21
2.2.1. Materials ............................................................................................... 21
2.2.2. G. frondosa extract preparation ............................................................ 21
2.2.3. Crude polysaccharide preparation ........................................................ 22
2.2.4. G. frondosa fraction preparation ........................................................... 22
2.2.5. Fractionation of n-hexane extract ......................................................... 23
2.2.6. α-Amylase inhibition assay .................................................................. 27
2.2.7. α-Glucosidase inhibition assay ............................................................. 27
2.2.8. Identification and quantification of the bioactive components ............ 28
2.2.8.1. Preparation of standard solutions and sample for gas chromatography-mass spectrometry (GC-MS) analysis ......... 28
2.2.8.2. GC-MS analysis ....................................................................... 29
2.3. Results and discussion ..................................................................................... 30
2.3.1. Yields of different G. frondosa components ........................................ 30
2.3.2. α-Amylase and α-glucosidase inhibitory activities .............................. 30
2.3.3. Identification and quantification of the bioactive components of G. frondosa ........................................................................................... 35
2.3.4. Structure-activity relationship .............................................................. 47
2.4. Conclusions ..................................................................................................... 51
Chapter 3 Physical and chemical characteristics of the interaction between the bioactive components of G. frondosa and α-glucosidase .............................. 52
3.1. Introduction ..................................................................................................... 52
3.2. Materials and methods ..................................................................................... 56
3.2.1. Materials ............................................................................................... 56
3.2.2. Sample preparation ............................................................................... 56
3.2.3. Kinetic assay of α-glucosidase inhibition ............................................. 56
3.2.4. Fluorescence spectra measurements ..................................................... 57
3.2.5. Circular dichroism measurements ........................................................ 57
3.3. Results and discussion ..................................................................................... 58
3.3.1. Kinetic assay of α-glucosidase inhibition ............................................. 58
3.3.2. Fluorescence spectra ............................................................................. 62
3.3.3. Mechanism of fluorescence quenching ................................................ 62
3.3.4. Circular dichroism spectra .................................................................... 67
3.4. Conclusions ..................................................................................................... 70
Chapter 4 Study on the effects of G. frondosa bioactive components on starch hydrolysis ...................................................................................................... 71
4.1. Introduction ..................................................................................................... 71
4.2. Materials and methods ..................................................................................... 72
4.2.1. Materials ............................................................................................... 72
4.2.2. Sample preparation ............................................................................... 72
4.2.3. Determination of starch hydrolysis rate................................................ 72
4.2.4. Statistical analysis ................................................................................ 73
4.3. Results and discussion ..................................................................................... 74
4.3.1. Establishment of a dialysis model which mimics the small intestine conditions ............................................................................................. 74
4.3.2. Determination of the starch hydrolysis rate .......................................... 74
4.4. Conclusions ..................................................................................................... 79
Chapter 5 Overall conclusions ........................................................................................ 80
References ...................................................................................................................... 82
Publications .................................................................................................................... 96
Figure content
Figure 1. Dried fruiting bodies of G. frondosa ................................................................. 5
Figure 2. Structure of the β-glucan in D-fraction ............................................................. 7
Figure 3. Mechanism of action of different types of oral anti-diabetic agents ............... 17
Figure 4. α-Glucosidase inhibitors inhibit the activity of α-glucosidase enzymes in the brush border of small intestinal enterocytes ......................................... 20
Figure 5. An overview of the G. frondosa sample preparation ...................................... 25
Figure 6. Structures of ergosterol and ergosterol peroxide ............................................. 26
Figure 7. An overview on the applications of GC/MS and LC/MS techniques for selected compound classes ............................................................................. 38
Figure 8. Structures of derivatization reagents and the trimethylsilylation reaction of sample and reagents ................................................................................... 39
Figure 9. Total ion chromatograms ................................................................................. 40
Figure 10. Structures of identified fatty acids in GF-H and GF-oil ............................... 41
Figure 11. Mass spectra of identified peaks of GF-H ..................................................... 42
Figure 12. Structures of cis-unsaturated fatty acids with different carbon chain
lengths and different numbers of double bonds ............................................ 50
Figure 13. Different types of reversible inhibition and their Lineweaver-Burk plots .... 54
Figure 14. Linear regression curves of reaction rates versus different volumes of α-glucosidase with or without samples ......................................................... 59
Figure 15. Reaction curves of α-glucosidase with or without samples .......................... 60
Figure 16. Lineweaver-Burk plot of the reactions of α-glucosidase with or without samples .......................................................................................................... 61
Figure 17. Fluorescence spectra of α-glucosidase interacted with different concentrations of samples ............................................................................. 64
Figure 18. The Stern-Volmer curves of α-glucosidase interacted with different concentrations of oleic acid and linoleic acid ............................................... 65
Figure 19. The Perrin curves of α-glucosidase interacted with different concentrations of oleic acid and linoleic acid ............................................... 65
Figure 20. Circular dichroism spectra of α-glucosidase interacted with different concentrations of samples ............................................................................. 68
Figure 21. Starch hydrolysis curves of samples at different concentrations .................. 76
Figure 22. Starch hydrolysis curves of different samples at the concentration of 1.2 mg/mL ................................................................................................. 77
Table content
Table 1. Yields of G. frondosa components .................................................................... 33
Table 2. Inhibitory concentrations of G. frondosa components on α-amylase and α-glucosidase activities ..................................................................................... 34
Table 3. Peak identification of trimethylsilyl (TMS) derivatives of fatty acids ............. 43
Table 4. Calibration curves of fatty acids ....................................................................... 44
Table 5. Contents of fatty acids in GF-H and GF-oil ..................................................... 45
Table 6. Inhibitory concentrations of fatty acids on α-amylase and α-glucosidase activities ............................................................................................................ 46
Table 7. Inhibitory concentrations of different saturated fatty acids and unsaturated fatty acids on α-amylase and α-glucosidase activities ...................................... 49
Table 8. Effects of reversible inhibitors on apparent Km and apparent Vmax ................... 55
Table 9. Ki values of oleic acid and linoleic acid on α-glucosidase ............................... 61
Table 10. KSV and Kq values of the interaction between α-glucosidase and samples ..... 66
Table 11. Kp values of the interaction between α-glucosidase and samples ................... 66
Table 12. Effects of oleic acid, linoleic acid and GF-H on the secondary structure contents of α-glucosidase ............................................................................... 69
Table 13. Starch hydrolysis rates of control, oleic acid, linoleic acid, GF-H and acarbose at different time periods ................................................................... 78
dc.language.isoen
dc.subject第二型糖尿病zh_TW
dc.subject舞菇zh_TW
dc.subjectα-澱粉&#37238zh_TW
dc.subjectα-葡萄糖&#33527zh_TW
dc.subject脂肪酸zh_TW
dc.subjectfatty acidsen
dc.subjectα-amylaseen
dc.subjectα-glucosidaseen
dc.subjecttype 2 diabetesen
dc.subjectGrifola frondosaen
dc.title舞菇抗第二型糖尿病相關消化酶之研究zh_TW
dc.titleStudy on the inhibitory effects of Grifola frondosa on type 2 diabetes-related digestive enzymesen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林松洲(Song-Chow Lin),徐駿森(Chun-Hua Hsu)
dc.subject.keyword舞菇,α-澱粉&#37238,α-葡萄糖&#33527,&#37238,第二型糖尿病,脂肪酸,zh_TW
dc.subject.keywordGrifola frondosa,α-amylase,α-glucosidase,type 2 diabetes,fatty acids,en
dc.relation.page97
dc.rights.note有償授權
dc.date.accepted2012-07-16
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
6.89 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved