Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65734
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡政達
dc.contributor.authorChia-Cheng Huangen
dc.contributor.author黃家政zh_TW
dc.date.accessioned2021-06-17T00:02:23Z-
dc.date.available2013-07-19
dc.date.copyright2012-07-19
dc.date.issued2012
dc.date.submitted2012-07-15
dc.identifier.citation[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V.
Grigorieva, and A. A. Firsov. Electric field effect in atomically thin carbon films. Science,
306(5696):666–669, 2004.
[2] Johannes Hachmann, Jonathan J. Dorando, Michael Aviles, and Garnet Kin-Lic Chan.
The radical character of the acenes: A density matrix renormalization group study. The
Journal of Chemical Physics, 127(13):134309, 2007.
[3] Gergely Gidofalvi and David A. Mazziotti. Active-space two-electron reduced-density-
matrix method:
complete active-space calculations without diagonalization of the n-
electron hamiltonian. The Journal of Chemical Physics, 129(13):134108, 2008.
[4] De-en Jiang and Sheng Dai. Electronic ground state of higher acenes. The Journal of
Physical Chemistry A, 112(2):332–335, 2008. PMID: 18085758.
[5] Jeng-Da Chai. Density functional theory with fractional orbital occupations. The Journal
of Chemical Physics, 136(15):154104, 2012.
[6] Yihan Shao, Laszlo Fusti Molnar, Yousung Jung, Jorg Kussmann, Christian Ochsenfeld,
Shawn T. Brown, Andrew T.B. Gilbert, Lyudmila V. Slipchenko, Sergey V. Levchenko,
Darragh P. O’Neill, Robert A. DiStasio Jr, Rohini C. Lochan, Tao Wang, Gregory J.O.
Beran, Nicholas A. Besley, John M. Herbert, Ching Yeh Lin, Troy Van Voorhis, Siu
Hung Chien, Alex Sodt, Ryan P. Steele, Vitaly A. Rassolov, Paul E. Maslen, Prakashan P.
Korambath, Ross D. Adamson, Brian Austin, Jon Baker, Edward F. C. Byrd, Holger
Dachsel, Robert J. Doerksen, Andreas Dreuw, Barry D. Dunietz, Anthony D. Dutoi,
Thomas R. Furlani, Steven R. Gwaltney, Andreas Heyden, So Hirata, Chao-Ping Hsu,
Gary Kedziora, Rustam Z. Khalliulin, Phil Klunzinger, Aaron M. Lee, Michael S. Lee,
WanZhen Liang, Itay Lotan, Nikhil Nair, Baron Peters, Emil I. Proynov, Piotr A. Pieni-
azek, Young Min Rhee, Jim Ritchie, Edina Rosta, C. David Sherrill, Andrew C. Simmon-
ett, Joseph E. Subotnik, H. Lee Woodcock III, Weimin Zhang, Alexis T. Bell, Arup K.
Chakraborty, Daniel M. Chipman, Frerich J. Keil, Arieh Warshel, Warren J. Hehre,
30
Henry F. Schaefer III, Jing Kong, Anna I. Krylov, Peter M. W. Gill, and Martin Head-
Gordon. Advances in methods and algorithms in a modern quantum chemistry program
package. Phys. Chem. Chem. Phys., 8:3172–3191, 2006.
[7] Pekka Koskinen, Sami Malola, and Hannu H ̈ kkinen. Self-passivating edge reconstruc-
a
tions of graphene. Phys. Rev. Lett., 101:115502, Sep 2008.
[8] Pekka Koskinen, Sami Malola, and Hannu H ̈ kkinen. Evidence for graphene edges be-
a
yond zigzag and armchair. Phys. Rev. B, 80:073401, Aug 2009.
̈
[9] Ca ̆ lar O. Girit, Jannik C. Meyer, Rolf Erni, Marta D. Rossell, C. Kisielowski, Li Yang,
̧ g
Cheol-Hwan Park, M. F. Crommie, Marvin L. Cohen, Steven G. Louie, and A. Zettl.
Graphene at the edge: Stability and dynamics. Science, 323(5922):1705–1708, 2009.
[10] Zexing Qu, Shushu Zhang, Chungen Liu, and Jean-Paul Malrieu. Communication: A
dramatic transition from nonferromagnet to ferromagnet in finite fused-azulene chain. The
Journal of Chemical Physics, 134(2):021101, 2011.
[11] S. Thomas, S. Ramasesha, K. Hallberg, and D. Garcia. Fused Azulenes: Possible Organic
Multiferroics. ArXiv e-prints, November 2011.
[12] John P. Perdew and Yue Wang.
Accurate and simple analytic representation of the
electron-gas correlation energy. Phys. Rev. B, 45:13244–13249, Jun 1992.
[13] P. A. M. Dirac. Note on exchange phenomena in the thomas atom. Mathematical Pro-
ceedings of the Cambridge Philosophical Society, 26(03):376–385, 1930.
[14] John P. Perdew, Kieron Burke, and Matthias Ernzerhof. Generalized gradient approxima-
tion made simple. Phys. Rev. Lett., 77:3865–3868, Oct 1996.
[15] John P. Perdew, Kieron Burke, and Matthias Ernzerhof. Generalized gradient approxima-
tion made simple [phys. rev. lett. 77, 3865 (1996)]. Phys. Rev. Lett., 78:1396–1396, Feb
1997.
[16] A. D. Becke. Density-functional exchange-energy approximation with correct asymptotic
behavior. Phys. Rev. A, 38:3098–3100, Sep 1988.
[17] Chengteh Lee, Weitao Yang, and Robert G. Parr. Development of the colle-salvetti
correlation-energy formula into a functional of the electron density. Phys. Rev. B, 37:785–
789, Jan 1988.
[18] R. Ditchfield, W. J. Hehre, and J. A. Pople. Self-consistent molecular-orbital methods. ix.
an extended gaussian-type basis for molecular-orbital studies of organic molecules. The
Journal of Chemical Physics, 54(2):724–728, 1971.
31
[19] W. J. Hehre, R. Ditchfield, and J. A. Pople. Self—consistent molecular orbital methods.
xii. further extensions of gaussian—type basis sets for use in molecular orbital studies of
organic molecules. The Journal of Chemical Physics, 56(5):2257–2261, 1972.
[20] Rodolphe Pollet and Hakim Amara.
Spin-unrestricted calculations of bare-edged
nanographenes using dft and many-body perturbation theory. Journal of Chemical Theory
and Computation, 5(7):1719–1722, 2009.
[21] Aron J. Cohen, David J. Tozer, and Nicholas C. Handy. Evaluation of ![s-hat][sup 2]¿ in
density functional theory. The Journal of Chemical Physics, 126(21):214104, 2007.
[22] Jiahu Wang, Axel D. Becke, and Jr. Vedene H. Smith. Evaluation of !s[sup 2]¿ in restricted,
unrestricted hartree–fock, and density functional based theories. The Journal of Chemical
Physics, 102(8):3477–3480, 1995.
[23] Joanne M. Wittbrodt and H. Bernhard Schlegel. Some reasons not to use spin projected
density functional theory. The Journal of Chemical Physics, 105(15):6574–6577, 1996.
[24] Jinhua Wang, Dmitry Yu. Zubarev, Michael R. Philpott, Sinisa Vukovic, William A.
Lester, Tian Cui, and Yoshiyuki Kawazoe. Onset of diradical character in small nano-
sized graphene patches. Phys. Chem. Chem. Phys., 12:–, 2010.
[25] B. Hajgat ́ , D. Szieberth, P. Geerlings, F. De Proft, and M. S. Deleuze. A benchmark
o
theoretical study of the electronic ground state and of the singlet-triplet split of benzene
and linear acenes. The Journal of Chemical Physics, 131(22):224321, 2009.
[26] M. Huzak, M. S. Deleuze, and B. Hajgat ́ . Half-metallicity and spin-contamination of
o
the electronic ground state of graphene nanoribbons and related systems: An impossible
compromise? The Journal of Chemical Physics, 135(10):104704, 2011.
[27] Sierra Rayne and Kaya Forest. Singlet–triplet excitation energies of the rectangular
graphene nanoribbon series : A comparative theoretical study. Computational and Theo-
retical Chemistry, 977(1–3):163 – 167, 2011.
[28] Buu Q. Pham and Thanh N. Truong. Electronic spin transitions in finite-size graphene.
Chemical Physics Letters, (0):–, 2012.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65734-
dc.description.abstract在這篇論文裡,我們以密度泛涵理論研究與石墨烯(Graphene)相關的分
子結構, 包括石墨烯奈米片(Graphene-like Nanopatches)和聚合薁鏈(Fused-Azulene chain), 特 別 是 這 些 聚 合 物 的 單 重 態 和 三 重 態 能 量 差 距(singlet and triplet energy gap), 並且利用非線性最小平方法(Non-linear least squares method)推算該聚合物在尺寸極限下單重態和三重態能量差距。 我們發現石墨烯奈米片和聚合薁鏈在尺寸極限下的單重態和三重態能量差距非常小。
另外我們也研究了這些分子基態的軌道佔據數(orbital occupation number),其最高被佔據軌道(highest occupied molecular orbital)的電子數和最低沒有被佔據軌道(lowest unoccupied molecular orbital)的電子數隨著分子系統的尺寸增加而越來越接近 1。 進一步研究之後,我們更發現不僅最高被佔據軌道和最低沒有被佔據軌道具有這種趨勢,其他附近的分子軌道也具有相同的趨勢,代表石墨烯奈米片和聚合薁鏈擁有多重自由基(multi-radical)的特
徵使用的是開發版本的化學計算軟體Q-Chem (Ab initio quantum chemistry package)。
zh_TW
dc.description.abstractThe electronic properties of fused-azulenes chain and graphene-like nanopatches have been probed by using the Thermally-Assisted-Occupation density functional theory (TAO-DFT) which is believed to have a correct treatment of such strong electronic correlation systems. The results in this study suggest that not only fused-azulenes but also graphene-patches show polyradical characteristics in their respec-tive polymeric limits, and also predict almost vanishing singlet-triplet states energy gaps of them by extrapolating the singlet-triplet states energy gap to their respective infine size limits. The theoretical calculation results of DFT provides a irregular trend of singlet-triplet energy gap curve for both fused-azulenes and grapehen-patches. We compared the singlet-triplet energy gap curves calculated by DFT and TAO-DFT, TAO-DFT provides a more reasonable and more smooth curve than DFT since TAO-DFT accurately describes the strong correlation effect and reduce the spin contamination effectively.en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:02:23Z (GMT). No. of bitstreams: 1
ntu-101-R98222056-1.pdf: 1461075 bytes, checksum: 1879cb056af0e2789165f13c8e454a8d (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員會審定書 i
Acknowledgments ii
致謝 iii
Abstract iv
中文摘要 v
1 Introduction 1
2 Computational methods 4
2.1 TAO-DFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3 Fused-azulenes chain 8
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Calculation detail and structures . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4 Graphene patches 23
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Calculation detail and structures . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5 Summary 35
Bibliography 37
dc.language.isoen
dc.subject石墨烯奈米片zh_TW
dc.subject密度泛函理論zh_TW
dc.subject聚合薁鏈zh_TW
dc.subject單重態-三重態能隙zh_TW
dc.subjectFused-azulenes chainen
dc.subjectDensity functional theoryen
dc.subjectGraphene-like Nanopatchesen
dc.subjectSinglet-triplet energy gapen
dc.title以密度泛函理論研究石墨烯相關系統之電子性質zh_TW
dc.titleTheoretical studies of electronic properties in graphene-related systems using Thermally-Assisted-Occupation density functional theoryen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張秀華,薛宏中
dc.subject.keyword密度泛函理論,石墨烯奈米片,聚合薁鏈,單重態-三重態能隙,zh_TW
dc.subject.keywordDensity functional theory,Graphene-like Nanopatches,Fused-azulenes chain,Singlet-triplet energy gap,en
dc.relation.page43
dc.rights.note有償授權
dc.date.accepted2012-07-16
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
1.43 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved