請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65734完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡政達 | |
| dc.contributor.author | Chia-Cheng Huang | en |
| dc.contributor.author | 黃家政 | zh_TW |
| dc.date.accessioned | 2021-06-17T00:02:23Z | - |
| dc.date.available | 2013-07-19 | |
| dc.date.copyright | 2012-07-19 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-07-15 | |
| dc.identifier.citation | [1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V.
Grigorieva, and A. A. Firsov. Electric field effect in atomically thin carbon films. Science, 306(5696):666–669, 2004. [2] Johannes Hachmann, Jonathan J. Dorando, Michael Aviles, and Garnet Kin-Lic Chan. The radical character of the acenes: A density matrix renormalization group study. The Journal of Chemical Physics, 127(13):134309, 2007. [3] Gergely Gidofalvi and David A. Mazziotti. Active-space two-electron reduced-density- matrix method: complete active-space calculations without diagonalization of the n- electron hamiltonian. The Journal of Chemical Physics, 129(13):134108, 2008. [4] De-en Jiang and Sheng Dai. Electronic ground state of higher acenes. The Journal of Physical Chemistry A, 112(2):332–335, 2008. PMID: 18085758. [5] Jeng-Da Chai. Density functional theory with fractional orbital occupations. The Journal of Chemical Physics, 136(15):154104, 2012. [6] Yihan Shao, Laszlo Fusti Molnar, Yousung Jung, Jorg Kussmann, Christian Ochsenfeld, Shawn T. Brown, Andrew T.B. Gilbert, Lyudmila V. Slipchenko, Sergey V. Levchenko, Darragh P. O’Neill, Robert A. DiStasio Jr, Rohini C. Lochan, Tao Wang, Gregory J.O. Beran, Nicholas A. Besley, John M. Herbert, Ching Yeh Lin, Troy Van Voorhis, Siu Hung Chien, Alex Sodt, Ryan P. Steele, Vitaly A. Rassolov, Paul E. Maslen, Prakashan P. Korambath, Ross D. Adamson, Brian Austin, Jon Baker, Edward F. C. Byrd, Holger Dachsel, Robert J. Doerksen, Andreas Dreuw, Barry D. Dunietz, Anthony D. Dutoi, Thomas R. Furlani, Steven R. Gwaltney, Andreas Heyden, So Hirata, Chao-Ping Hsu, Gary Kedziora, Rustam Z. Khalliulin, Phil Klunzinger, Aaron M. Lee, Michael S. Lee, WanZhen Liang, Itay Lotan, Nikhil Nair, Baron Peters, Emil I. Proynov, Piotr A. Pieni- azek, Young Min Rhee, Jim Ritchie, Edina Rosta, C. David Sherrill, Andrew C. Simmon- ett, Joseph E. Subotnik, H. Lee Woodcock III, Weimin Zhang, Alexis T. Bell, Arup K. Chakraborty, Daniel M. Chipman, Frerich J. Keil, Arieh Warshel, Warren J. Hehre, 30 Henry F. Schaefer III, Jing Kong, Anna I. Krylov, Peter M. W. Gill, and Martin Head- Gordon. Advances in methods and algorithms in a modern quantum chemistry program package. Phys. Chem. Chem. Phys., 8:3172–3191, 2006. [7] Pekka Koskinen, Sami Malola, and Hannu H ̈ kkinen. Self-passivating edge reconstruc- a tions of graphene. Phys. Rev. Lett., 101:115502, Sep 2008. [8] Pekka Koskinen, Sami Malola, and Hannu H ̈ kkinen. Evidence for graphene edges be- a yond zigzag and armchair. Phys. Rev. B, 80:073401, Aug 2009. ̈ [9] Ca ̆ lar O. Girit, Jannik C. Meyer, Rolf Erni, Marta D. Rossell, C. Kisielowski, Li Yang, ̧ g Cheol-Hwan Park, M. F. Crommie, Marvin L. Cohen, Steven G. Louie, and A. Zettl. Graphene at the edge: Stability and dynamics. Science, 323(5922):1705–1708, 2009. [10] Zexing Qu, Shushu Zhang, Chungen Liu, and Jean-Paul Malrieu. Communication: A dramatic transition from nonferromagnet to ferromagnet in finite fused-azulene chain. The Journal of Chemical Physics, 134(2):021101, 2011. [11] S. Thomas, S. Ramasesha, K. Hallberg, and D. Garcia. Fused Azulenes: Possible Organic Multiferroics. ArXiv e-prints, November 2011. [12] John P. Perdew and Yue Wang. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B, 45:13244–13249, Jun 1992. [13] P. A. M. Dirac. Note on exchange phenomena in the thomas atom. Mathematical Pro- ceedings of the Cambridge Philosophical Society, 26(03):376–385, 1930. [14] John P. Perdew, Kieron Burke, and Matthias Ernzerhof. Generalized gradient approxima- tion made simple. Phys. Rev. Lett., 77:3865–3868, Oct 1996. [15] John P. Perdew, Kieron Burke, and Matthias Ernzerhof. Generalized gradient approxima- tion made simple [phys. rev. lett. 77, 3865 (1996)]. Phys. Rev. Lett., 78:1396–1396, Feb 1997. [16] A. D. Becke. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 38:3098–3100, Sep 1988. [17] Chengteh Lee, Weitao Yang, and Robert G. Parr. Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B, 37:785– 789, Jan 1988. [18] R. Ditchfield, W. J. Hehre, and J. A. Pople. Self-consistent molecular-orbital methods. ix. an extended gaussian-type basis for molecular-orbital studies of organic molecules. The Journal of Chemical Physics, 54(2):724–728, 1971. 31 [19] W. J. Hehre, R. Ditchfield, and J. A. Pople. Self—consistent molecular orbital methods. xii. further extensions of gaussian—type basis sets for use in molecular orbital studies of organic molecules. The Journal of Chemical Physics, 56(5):2257–2261, 1972. [20] Rodolphe Pollet and Hakim Amara. Spin-unrestricted calculations of bare-edged nanographenes using dft and many-body perturbation theory. Journal of Chemical Theory and Computation, 5(7):1719–1722, 2009. [21] Aron J. Cohen, David J. Tozer, and Nicholas C. Handy. Evaluation of ![s-hat][sup 2]¿ in density functional theory. The Journal of Chemical Physics, 126(21):214104, 2007. [22] Jiahu Wang, Axel D. Becke, and Jr. Vedene H. Smith. Evaluation of !s[sup 2]¿ in restricted, unrestricted hartree–fock, and density functional based theories. The Journal of Chemical Physics, 102(8):3477–3480, 1995. [23] Joanne M. Wittbrodt and H. Bernhard Schlegel. Some reasons not to use spin projected density functional theory. The Journal of Chemical Physics, 105(15):6574–6577, 1996. [24] Jinhua Wang, Dmitry Yu. Zubarev, Michael R. Philpott, Sinisa Vukovic, William A. Lester, Tian Cui, and Yoshiyuki Kawazoe. Onset of diradical character in small nano- sized graphene patches. Phys. Chem. Chem. Phys., 12:–, 2010. [25] B. Hajgat ́ , D. Szieberth, P. Geerlings, F. De Proft, and M. S. Deleuze. A benchmark o theoretical study of the electronic ground state and of the singlet-triplet split of benzene and linear acenes. The Journal of Chemical Physics, 131(22):224321, 2009. [26] M. Huzak, M. S. Deleuze, and B. Hajgat ́ . Half-metallicity and spin-contamination of o the electronic ground state of graphene nanoribbons and related systems: An impossible compromise? The Journal of Chemical Physics, 135(10):104704, 2011. [27] Sierra Rayne and Kaya Forest. Singlet–triplet excitation energies of the rectangular graphene nanoribbon series : A comparative theoretical study. Computational and Theo- retical Chemistry, 977(1–3):163 – 167, 2011. [28] Buu Q. Pham and Thanh N. Truong. Electronic spin transitions in finite-size graphene. Chemical Physics Letters, (0):–, 2012. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65734 | - |
| dc.description.abstract | 在這篇論文裡,我們以密度泛涵理論研究與石墨烯(Graphene)相關的分
子結構, 包括石墨烯奈米片(Graphene-like Nanopatches)和聚合薁鏈(Fused-Azulene chain), 特 別 是 這 些 聚 合 物 的 單 重 態 和 三 重 態 能 量 差 距(singlet and triplet energy gap), 並且利用非線性最小平方法(Non-linear least squares method)推算該聚合物在尺寸極限下單重態和三重態能量差距。 我們發現石墨烯奈米片和聚合薁鏈在尺寸極限下的單重態和三重態能量差距非常小。 另外我們也研究了這些分子基態的軌道佔據數(orbital occupation number),其最高被佔據軌道(highest occupied molecular orbital)的電子數和最低沒有被佔據軌道(lowest unoccupied molecular orbital)的電子數隨著分子系統的尺寸增加而越來越接近 1。 進一步研究之後,我們更發現不僅最高被佔據軌道和最低沒有被佔據軌道具有這種趨勢,其他附近的分子軌道也具有相同的趨勢,代表石墨烯奈米片和聚合薁鏈擁有多重自由基(multi-radical)的特 徵使用的是開發版本的化學計算軟體Q-Chem (Ab initio quantum chemistry package)。 | zh_TW |
| dc.description.abstract | The electronic properties of fused-azulenes chain and graphene-like nanopatches have been probed by using the Thermally-Assisted-Occupation density functional theory (TAO-DFT) which is believed to have a correct treatment of such strong electronic correlation systems. The results in this study suggest that not only fused-azulenes but also graphene-patches show polyradical characteristics in their respec-tive polymeric limits, and also predict almost vanishing singlet-triplet states energy gaps of them by extrapolating the singlet-triplet states energy gap to their respective infine size limits. The theoretical calculation results of DFT provides a irregular trend of singlet-triplet energy gap curve for both fused-azulenes and grapehen-patches. We compared the singlet-triplet energy gap curves calculated by DFT and TAO-DFT, TAO-DFT provides a more reasonable and more smooth curve than DFT since TAO-DFT accurately describes the strong correlation effect and reduce the spin contamination effectively. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T00:02:23Z (GMT). No. of bitstreams: 1 ntu-101-R98222056-1.pdf: 1461075 bytes, checksum: 1879cb056af0e2789165f13c8e454a8d (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
Acknowledgments ii 致謝 iii Abstract iv 中文摘要 v 1 Introduction 1 2 Computational methods 4 2.1 TAO-DFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 Fused-azulenes chain 8 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.2 Calculation detail and structures . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.3 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 4 Graphene patches 23 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.2 Calculation detail and structures . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.3 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5 Summary 35 Bibliography 37 | |
| dc.language.iso | en | |
| dc.subject | 石墨烯奈米片 | zh_TW |
| dc.subject | 密度泛函理論 | zh_TW |
| dc.subject | 聚合薁鏈 | zh_TW |
| dc.subject | 單重態-三重態能隙 | zh_TW |
| dc.subject | Fused-azulenes chain | en |
| dc.subject | Density functional theory | en |
| dc.subject | Graphene-like Nanopatches | en |
| dc.subject | Singlet-triplet energy gap | en |
| dc.title | 以密度泛函理論研究石墨烯相關系統之電子性質 | zh_TW |
| dc.title | Theoretical studies of electronic properties in graphene-related systems using Thermally-Assisted-Occupation density functional theory | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張秀華,薛宏中 | |
| dc.subject.keyword | 密度泛函理論,石墨烯奈米片,聚合薁鏈,單重態-三重態能隙, | zh_TW |
| dc.subject.keyword | Density functional theory,Graphene-like Nanopatches,Fused-azulenes chain,Singlet-triplet energy gap, | en |
| dc.relation.page | 43 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-07-16 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 1.43 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
