Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65733
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王藹農(Ai-Nung Wang)
dc.contributor.authorWei-Ming Hsuen
dc.contributor.author許為明zh_TW
dc.date.accessioned2021-06-17T00:02:17Z-
dc.date.available2022-12-31
dc.date.copyright2012-07-27
dc.date.issued2012
dc.date.submitted2012-07-16
dc.identifier.citation[1] J. B. Conway, A course in functional analysis, Second edition, Springer, New York, 2007.
[2] D. Cordero-Erausquin, Some applications of mass transport to Gaussian type inequalities, Arch. Rational Mech. Anal. 161, 257-269, 2002.
[3] D. Cordero-Erausquin, B. Nazaret, and C. Villani, A mass-transportation approach to sharp Sobolev and Gagliardo-Nirenberg inequalities, Advances in Mathematics, 182, pp. 307-332, 2004.
[4] M. D. Pino and J. Dolbeault, Best constants for Gagliardo-Nirenberg inequalities and application to nonlinear diffusions, J. Math. Pures Appl. 81 (9) 847-875,
2002.
[5] M. D. Pino and J. Dolbeault, The optimal Euclidean L p -Sobolev logarithmic inequality, 2000.
[6] L. C. Evans, Partial differential equations, Graduate Studies in Mathematics, Vol.19, Amer. Math. Soc., 1998.
[7] L. C. Evans, Partial differential equations and Monge-Kantorovich mass transfer, Current development in mathematics, Int. Press, Boston, 65-126, 1999.
[8] L. C. Evans and R.F. Gariepy, Measure theory and fine properties of functions, CRC Press, Boca Raton, FL, 1992.
[9] L. C. Evans and W. Gangbo, Differential equations methods for the Monge-Kantorovich mass transfer problem, Mem. Amer. Math. Soc. 653, 1999.
[10] G. B. Folland, Real analysis: modern techniques and their applications, second edition, A John Wiley and Sons, Inc., publication, 1999.
[11] W. Gangbo and R. J. McCann, The geometry of optimal transportation, Acta Math. 177, 113-161, 1996.
[12] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Second edition, Springer, Berlin,2001.
[13] P. D. Lax, Functional analysis, A John Wiley and Sons, Inc., publication, 2002.
[14] E. H. Lieb and M. Loss, Analysis, Graduate Studies in Mathematics, Amer. Math. Soc., Providence, RI, 1996.
[15] R. J. McCann, Existence and uniqueness of monotone measure-preserving maps, Duke Math. J. 80 (2), 309-323, 1995.
[16] R. J. McCann, A convexity principle for interacting gases, Adv. Math. 128 (1), 153-179, 1997.
[17] N. S. Trudinger and X.-J. Wang, On the Monge mass transfer problem, Calc. Var. PDE, 13, 19-31, 2001.
[18] P. R. Thie, An Introduction to Linear Programming and Game Theory, John Wiley and Sons, 1979.
[19] G. Talenti, Best constants in Sobolev inequality, Ann. Mat. Pura Appl. (IV) 110, 353-372, 1976.
[20] C. Villani, Topics in mass transportation, Graduate Studies in Mathematics, Vol. 58, Amer. Math. Soc., Providence, RI, 2003.
[21] R. Osserman, The isoperimetric inequality, Bull. Amer. Math. Soc. 84 (6), 1182-1238, 1978.
[22] R. L. Wheeden and A. Zygmund, Measure and Integral: An Introduction to Real Analysis, Monographs and textbooks in pure and applied mathematics 43, Taylor and Francis Group, LLC, CRC Press, 1977.
[23] W. P. Ziemer, Weakly differentialble functions: Sobolev space and functions of bounded variation, Springer, Berlin, 1989.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65733-
dc.description.abstract在這篇論文當中,我們首先證明在特殊的二次成本函數之下的蒙日質量運輸問題是有解的,而且我們將使用在此問題中所構造出來的最優映射來幫助我們去確定某些索伯列夫型不等式中的最佳常數。在此我們呈現出質量運輸方法提供一個很基本的方式去研究某些索伯列夫型不等式。我們在在n維歐氏空間中使用此方法時並未用到其歐氏結構。為了完成這次的工作,我們的主要參考文獻為[3]和[7]。zh_TW
dc.description.abstractIn this thesis, we first give a proof of the Monge mass transport problem for the special quadratic cost function, and use the optimal map which we constructed to sharp certain Sobolev-type inequalities. We show that mass transportation methods provide an elementary approach to the study of certain Sobolev-type inequalities. The Euclidean structure of n-dimensional Euclidean space plays no role in our approach. Besides, to complete our work, we
mainly consult the paper [3] and [7].
en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:02:17Z (GMT). No. of bitstreams: 1
ntu-101-R99221010-1.pdf: 548385 bytes, checksum: e592a90bd2372e074701f6ce2de83903 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents謝辭………………………………………………………………………………... i
中文摘要………………………………………………………………….….…… ii
英文摘要……………………………………………………………………….…. iii
1 Introduction……………………………………………………………………. 1
2 Preliminary ……………………………………………………………………. 5
2.1 Mass transport……………………….…………………………….…….. 5
2.2 Legendre transform………...…………………...……………………….. 8
2.3 Arzela-Ascoli Theorem …….……………………………………..….…. 8
2.4 Regularization and approximation by mollification ………..…................ 9
2.5 Weak derivatives and Sobolev spaces ………………………………..... 10
2.6 BV functions …………………………………………………….….….. 12
2.7 Second derivatives a.e. for convex functions …………………….……. 13
2.8 Solving the Monge-Ampere equation ………………………………….. 15
2.9 The isoperimetric inequality ……………………………………..…..… 16
3 Monge mass transport problem ………………………………….………....... 17
3.1 Motivation from linear programming ……………………………….…… 17
3.2 Kantorovich dual problem ………………….…………………….….…... 17
3.3 Construction of an optimal map to the Monge problem……………..…… 28
4 Sharp Sobolev inequalities…………………………………………………… 33
4.1 Introduction and some important tools …………………………………... 33
4.2 Sharp Sobolev inequalities for the case p > 1 ……………………….…… 41
4.3 Sharp Sobolev inequalities for the case p = 1 ……………………………. 50
4.4 Equality cases of Sobolev inequalities…………………………………… 51
5 Sharp Galiardo-Nirenberg inequalities……………………………………….. 67
5.1 Galiardo-Nirenberg inequalities ………………….……………….……... 67
5.2 Equality cases of Proposition 5.1…………………….…………………... 78

Reference………………….………………………………………………….…... 79
dc.language.isoen
dc.subject加里亞爾多-尼倫堡不等式zh_TW
dc.subject最佳常數索伯列夫不等式zh_TW
dc.subject蒙日質量傳遞問題zh_TW
dc.subject最優運輸zh_TW
dc.subjectGagliardo-Nirenberg inequalityen
dc.subjectMonge mass transport problemen
dc.subjectsharp constantsen
dc.subjectSobolev inequalityen
dc.subjectoptimal transporten
dc.title以最優運輸方法確定某些索伯列夫型不等式中的最佳常數zh_TW
dc.titleSharp certain Sobolev-type inequalities via optimal transporten
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳俊全(Chiun-Chuan Chen),陳界山(Jein-Shan Chen)
dc.subject.keyword最優運輸,蒙日質量傳遞問題,最佳常數索伯列夫不等式,加里亞爾多-尼倫堡不等式,zh_TW
dc.subject.keywordoptimal transport,Monge mass transport problem,sharp constants,Sobolev inequality,Gagliardo-Nirenberg inequality,en
dc.relation.page81
dc.rights.note有償授權
dc.date.accepted2012-07-16
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
535.53 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved