Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65731
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃升龍(Sheng-Lung Huang)
dc.contributor.authorYi-Ping Laien
dc.contributor.author賴奕蘋zh_TW
dc.date.accessioned2021-06-17T00:02:09Z-
dc.date.available2012-07-27
dc.date.copyright2012-07-27
dc.date.issued2012
dc.date.submitted2012-07-13
dc.identifier.citation[1] D. Attwood, Soft X-rays and Extreme Ultraviolet Radiation: Principles and Applications, Cambridge University Press, Berkeley (1999)
[2] J. A. Samson and D. L. Ederer, Vacuum Ultraviolet SpectroscopyⅠ, Academic Press, San Diego (1972)
[3] W. B. Colson, “Theory of a free electron laser, “, Physics Letters A 59 187 (1976)
[4] P. Jaegle, Coherent Sources of XUV Radiation: Soft X-ray Laser and High-Order Harmonic Generation., Springer (2006)
[5] H. A. BenderⅢ, Analysis of the operation and plasma dynamics of extreme-ultraviolet and soft x-ray lasers, PhD thesis, University of Central Florida, Department of Physics (1998)
[6] V. Bakshi, EUV Sources for Lithography, Bellingham, Washington USA, SPIE Press (2005)
[7] V. Sizyuk, A. Hassanein, and T. Sizyuk, 'Three-dimensional simulation of laser-produced plasma for extreme ultraviolet lithography applications,' J. Appl. Phys. 100 103106 (2006)
[8] K. Nishihara, A. Sunahara, A. Sasaki, M. Nunami, et al., 'Plasma physics and radiation hydrodynamics in developing an extreme ultraviolet light source for lithography,' Phys. Plasmas 15 056708 (2008)
[9] A. Djaoui, A User Giude for the Laser-Plasma Simulation Code: MED103, Rutherford Appleton Laboratory (1996)
[10] J. P. Christiansen, D. E. T. F. Ashby, and K. V. Roberts, “MEDUSA: a one-dimensional laser fusion code,” Comput. Phys. Commun. 7 271 (1974)
[11] C. Keyser, G. Schriever, M. Richardson, and E. Turcu, 'Studies of high-repetition-rate laser plasma EUV sources form droplet targets,' App. Phys. A 77 217 (2003)
[12] A. Cummings, G. O'Sullivan, P. Dunne, E. Sokell, N. Murphy, and J. White, 'Conversion efficiency of a laser-produced Sn plasma at 13.5 nm, simulated with a one-dimensional hydrodynamic model and treated as a multi-component blackbody,' J. Phys. D: Appl. Phys. 38 604 (2005)
[13] A. Rubenchik and S. Witkowski, Physics of Laser Plasma, Elsevier Science Publishers, North-Holland (1991)
[14] W. L. Kruer, The Physics of Laser Plasma Interaction, Westview Press, USA (2003)
[15] P. Gibbon, Short Pulse Laser Interactions with Matter: An Introduction, Imperial College Press (2005)
[16] L. Houches, Interaction Laser-Plasma, North-Holland Publishing Company, Amsterdam, New York, Oxford (1980)
[17] D. Giulietti and L. A. Gizzi, “X-ray emission from laser produced plasmas, “ LaRivista del Nuovo Cimento 21 1 (1998)
[18] J. Zeng, C. Goa, and J. Yuan, 'Detailed investigations on radiatvie opacity and emissivity of tin plasmas in the extreme-ultraviolet region,' Phys. Rev. E 82 026409 (2010)
[19] G. O'Sullivan, A. Cummings, C. Z. Dong, et al., 'Emission and absorption in laser produced plasmas: processes and applications,' Journal of Physics: Conference Series 163 012003 (2009)
[20] R. C. Spitzer, T. J. Orzechowski, D. W. Phillion, R. L. Kauffman, and C. Cerjan, 'Conversion efficiencies from laser-produced plasmas in the extreme ultraviolet regime,' J. Appl. Phys. 79 2251 (1996)
[21] D. R. Bates, A. E. Kingston and R. W. P. McWhirter, 'Recombination between electrons and atomic ions. Ⅱ Optically thick plasmas,' Royal Society of London Proceedings Series A 270 155 (1962)
[22] L. L. House, 'Ionization equilibrium of the elements from H to Fe,' Astrophysical Journal Supplement 8 370 (1964)
[23] I. C. E. Turcu and J. B. Dance, X-Rays from Laser Plasmas: Generation and Applications, John Wiley & Sons Ltd (1999)
[24] D. Colombant and G. F. Tonon, 'X-ray emission in laser-produced plasmas,' J. Appl. Phys. 44 8 (1973)
[25] V. Morozov, V. Tolkach, and A. Hassanein, Calculation of Tin Atomic Data and Plasma Properties, Energy Technology Division, Argonne National Laboratory (2004)
[26] Y. Shimada, H. Nishimura, M. Nakai, K. Hashimoto, M. Yamaura, et al., 'Characterization of extreme ultraviolet emission from laser-produced spherical tin plasma generated with multiple laser beams,' Appl. Phys. Lett. 86 051051 (2005)
[27] A Endo, H. Hoshino, T. Suganuma, et al., 'Laser produced EUV light source development for HVM,' Proceedings of SPIE 6517 (2007)
[28] S. A. George, W. T. Silfvast, K. Takenoshita, R. T. Bernath, et al., 'Comparative extreme ultraviolet emission measurements for lithium and tin laser plasmas,' Optics Letters 32 8 (2007)
[29] J. R. Hoffman, A. N. Bykanov, O. V. Khodykin, A. I. Ershov, et al, 'LPP EUV conversion efficiency optimization,' Proceedings of SPIE 5751 892 (2005)
[30] T. Auguste, F. G. Dortan, T. Ceccotti, J. F. Hergott, et al, 'Numerical study of nanosecond laser interactions with micro-sized single droplets and sprays of xenon,' J. Appl. Phys. 101 043302 (2007)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65731-
dc.description.abstract電射激發電漿產生13.5 nm極紫外光源之研究為一新興領域。相對於其它技術,雷射激發電漿有較高的轉換效率,且短波長的極紫外光有很高的應用價值。極紫外光可應用於半導體光微影技術,提供高解析度與高景深解析度;極紫外光亦可應用於光學同調斷層術,提供奈米級之解析度,彌補現今光學顯微鏡和電子顯微鏡解析範圍間的斷層。由於電射激發電漿的系統過於複雜、無法僅靠理論分析,故發展適當的模擬模型有其必要性。極紫外光產生的物理過程,包含流體力學、熱力學、原子物理、電磁輻射等。若要完整模擬此流程,需要極大的運算量。在此,發展一維球對稱的模型模型,並經過實驗之驗證,為完整且可靠的模擬模型。
此模型是根據MED103(已發展完成之流體程式)做修改及擴充,使其有更高的空間解析的、入射雷射波型有更高的自由度,且經由恰當的電漿平衡模型考慮離子價數隨時間的演變。最後,經由靶材離子(錫)的權重振子強度估算電漿在 13.5±2% nm 內的輻射量。最後,討論雷射強度(1010~1012 W/cm2)、脈衝長度(0~80 ns)、雷射波形(前三角波、後三角波與高斯波)、靶材大小(半徑10~100 μm)、靶材密度(1019~1022 cm-3)、靶材初始溫度(0~10 eV)對系統轉換效率之影響。並根據本實驗室之架構──雷射能量為1~2 mJ、雷射波形為前三角波、脈衝長度約5~15 ns;靶材為重量百分濃度為14%、半徑為20~40 μm之錫溶液小球,設計最佳的實驗參數。
zh_TW
dc.description.abstractThe development of compact and high efficiency extreme ultraviolet (EUV) light sources have evolved from academic researches to industrial applications, e.g. metrology and lithography et al. The EUV light sources based on the laser-produced plasma attract researchers' attention due to its power scalability and spatial coherence. The plasma-based system is too complicated to be theoretically analyzed, so the computer simulation becomes indispensible. However, it is very complicated and computationally intensive to model the whole EUV generation process, which includes comprising seed ionization, plasma formation, and EUV emission. Here we present a simplified spherical-symmetric simulation model for the generation of 13.5 nm extreme ultraviolet source by laser-produced plasma with the experimental bench marks to make the simulation tool more accessible and easier. The model is achieved by revising the one-dimensional hydrodynamic code MED103 so that arbitrary laser pulse shape and more simulation cells can be considered and coupling the collision-radiative equilibrium equations to calculate the ion charge state distributions. In addition, in-band emission of 13.5±2% nm is estimated according to the contributions from the weighted oscillator strengths of Sn8+~Sn13+. The simulated temporal and spatial evolution of plasma density, electron temperature, EUV emission profile, and ion charge states for 1064-nm laser and tin-doped droplet target will be presented in the paper. The influences of laser duration, pulse shape, dopant density, and target diameter on EUV characteristics were examined discussed in the paper.en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:02:09Z (GMT). No. of bitstreams: 1
ntu-101-R99941059-1.pdf: 3367335 bytes, checksum: 057917f5967d41a55472cc1f976bac79 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents致謝 ⅰ
中文摘要 ⅱ
Abstract ⅲ
目錄 ⅳ
圖目錄 ⅵ
表目錄 ⅳ
第一章 緒論 1
第二章 理論介紹 4
2.1 電漿的產生 4
2.2 電漿的流體模型 6
2.3 雷射與電漿的交互作用 10
2.4 極紫外光源之產生 14
第三章 模擬方法 18
3.1 演算法 18
3.2 流體模型 19
3.3 電漿平衡模型 22
3.4 極紫外光輻射之估算 26
3.5 驗證結果之參照 29
第四章 模擬結果與討論 34
4.1 電漿參數與極紫外光輻射之關係 34
4.2 雷射參數的影響 38
4.3 靶材參數的影響 43
4.4 實驗參數的相關討論 45
第五章 結論與未來展望 48
參考文獻 50
附錄一 符號定義表 54
附錄二 修改後之MED103說明 57
附錄三 張量積與張量之定義 66
dc.language.isozh-TW
dc.subject錫zh_TW
dc.subject極紫外光zh_TW
dc.subject雷射激發電漿zh_TW
dc.subject轉換效率zh_TW
dc.subjectconversion efficiencyen
dc.subjectlaser produced plasmaen
dc.subjectextreme ultravioleten
dc.subjecttinen
dc.title一維球對稱雷射激發電漿產生13.5奈米極紫外光源之模擬研究zh_TW
dc.titleA SIMPLIFIED SPHERICAL-SYMMETRY SIMULATION MODEL FOR THE GENERATION OF 13.5-NM EXTREME ULTRAVIOLET SOURCE BY LASER-PRODUCED PLASMen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳仕宏(Shih-Hung Chen),汪治平(Jyhpyng Wang),朱旭新(Hsu-Hsin Chu)
dc.subject.keyword轉換效率,雷射激發電漿,極紫外光,錫,zh_TW
dc.subject.keywordconversion efficiency,laser produced plasma,extreme ultraviolet,tin,en
dc.relation.page66
dc.rights.note有償授權
dc.date.accepted2012-07-16
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
3.29 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved