Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65715
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor江宏仁(Hong-Ren Jiang)
dc.contributor.authorHong-Yang Linen
dc.contributor.author林宏洋zh_TW
dc.date.accessioned2021-06-17T00:00:59Z-
dc.date.available2020-02-19
dc.date.copyright2020-02-19
dc.date.issued2020
dc.date.submitted2020-02-15
dc.identifier.citation[1] J. Lin et al., 'Laser-induced porous graphene films from commercial polymers,' Nature communications, vol. 5, p. 5714, 2014.
[2] R. Ye et al., 'Laser‐Induced Graphene Formation on Wood,' Advanced Materials, vol. 29, no. 37, p. 1702211, 2017.
[3] Y. Chyan, R. Ye, Y. Li, S. P. Singh, C. J. Arnusch, and J. M. Tour, 'Laser-induced graphene by multiple lasing: toward electronics on cloth, paper, and food,' ACS nano, vol. 12, no. 3, pp. 2176-2183, 2018.
[4] F. Banhart, J. Kotakoski, and A. V. Krasheninnikov, 'Structural defects in graphene,' ACS nano, vol. 5, no. 1, pp. 26-41, 2010.
[5] 丁勝懋, 雷射工程導論. 中央圖書出版社, 1995.
[6] P. Kazakevich, A. Simakin, V. Voronov, and G. A. Shafeev, 'Laser induced synthesis of nanoparticles in liquids,' Applied Surface Science, vol. 252, no. 13, pp. 4373-4380, 2006.
[7] R. Streubel, S. Barcikowski, and B. Gökce, 'Continuous multigram nanoparticle synthesis by high-power, high-repetition-rate ultrafast laser ablation in liquids,' Optics letters, vol. 41, no. 7, pp. 1486-1489, 2016.
[8] Q. Xue and E. S. Yeung, 'Determination of lactate dehydrogenase isoenzymes in single lymphocytes from normal and leukemia cell lines,' Journal of Chromatography B: Biomedical Sciences and Applications, vol. 677, no. 2, pp. 233-240, 1996.
[9] D. W. Armstrong and L. He, 'Determination of cell viability in single or mixed samples using capillary electrophoresis laser-induced fluorescence microfluidic systems,' Analytical Chemistry, vol. 73, no. 19, pp. 4551-4557, 2001.
[10] K. H. Kurniawan, M. O. Tjia, and K. Kagawa, 'Review of laser-induced plasma, its mechanism, and application to quantitative analysis of hydrogen and deuterium,' Applied Spectroscopy Reviews, vol. 49, no. 5, pp. 323-434, 2014.
[11] D. A. Cremers, R. A. Multari, and A. K. Knight, 'Laser‐induced breakdown spectroscopy,' Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation, pp. 1-28, 2006.
[12] N. K. Rai and A. Rai, 'LIBS—an efficient approach for the determination of Cr in industrial wastewater,' Journal of hazardous materials, vol. 150, no. 3, pp. 835-838, 2008.
[13] J. Tang et al., 'Ultrafast Photoinduced Multimode Antiferromagnetic Spin Dynamics in Exchange‐Coupled Fe/RFeO3 (R= Er or Dy) Heterostructures,' Advanced Materials, vol. 30, no. 27, p. 1706439, 2018.
[14] J.-Y. Bigot, M. Vomir, and E. Beaurepaire, 'Coherent ultrafast magnetism induced by femtosecond laser pulses,' Nature Physics, vol. 5, no. 7, p. 515, 2009.
[15] H.-R. Jiang, N. Yoshinaga, and M. Sano, 'Active motion of a Janus particle by self-thermophoresis in a defocused laser beam,' Physical review letters, vol. 105, no. 26, p. 268302, 2010.
[16] J. H. Ryu, S. Y. Bang, J.-W. Yoon, C. S. Lim, and K. B. Shim, 'Pulsed laser induced synthesis of scheelite-type colloidal nanoparticles in liquid and the size distribution by nanoparticle tracking analysis,' Applied surface science, vol. 253, no. 20, pp. 8408-8414, 2007.
[17] K. Chaudhary, S. Z. H. Rizvi, and J. Ali, 'Laser-induced plasma and its applications,' Plasma Science and Technology–Progress in Physical States and Chemical Reactions, pp. 259-291, 2016.
[18] M. F. El-Kady, V. Strong, S. Dubin, and R. B. Kaner, 'Laser scribing of high-performance and flexible graphene-based electrochemical capacitors,' Science, vol. 335, no. 6074, pp. 1326-1330, 2012.
[19] G. Xu, Z. A. Jarjes, V. Desprez, P. A. Kilmartin, and J. Travas-Sejdic, 'Sensitive, selective, disposable electrochemical dopamine sensor based on PEDOT-modified laser scribed graphene,' Biosensors and Bioelectronics, vol. 107, pp. 184-191, 2018.
[20] A. Ferrari, S. Rodil, and J. Robertson, 'Interpretation of infrared and Raman spectra of amorphous carbon nitrides,' Physical Review B, vol. 67, no. 15, p. 155306, 2003.
[21] C. K. N. Patel, 'Continuous-wave laser action on vibrational-rotational transitions of C O 2,' Physical review, vol. 136, no. 5A, p. A1187, 1964.
[22] R. Srinivasan, R. Hall, W. Wilson, W. Loehle, and D. Allbee, 'Ultraviolet laser irradiation of the polyimide, PMDA-ODA (Kapton™), to yield a patternable, porous, electrically conducting carbon network,' Synthetic metals, vol. 66, no. 3, pp. 301-307, 1994.
[23] F. Raimondi et al., 'Quantification of polyimide carbonization after laser ablation,' Journal of Applied Physics, vol. 88, no. 6, pp. 3659-3666, 2000.
[24] Y. Li et al., 'Laser‐Induced Graphene in Controlled Atmospheres: From Superhydrophilic to Superhydrophobic Surfaces,' Advanced Materials, vol. 29, no. 27, p. 1700496, 2017.
[25] L. X. Duy, Z. Peng, Y. Li, J. Zhang, Y. Ji, and J. M. Tour, 'Laser-induced graphene fibers,' Carbon, vol. 126, pp. 472-479, 2018.
[26] A. C. Ferrari and D. M. Basko, 'Raman spectroscopy as a versatile tool for studying the properties of graphene,' Nature nanotechnology, vol. 8, no. 4, p. 235, 2013.
[27] Z. Peng, J. Lin, R. Ye, E. L. Samuel, and J. M. Tour, 'Flexible and stackable laser-induced graphene supercapacitors,' ACS applied materials & interfaces, vol. 7, no. 5, pp. 3414-3419, 2015.
[28] L. Li et al., 'High‐performance pseudocapacitive microsupercapacitors from laser‐induced graphene,' Advanced Materials, vol. 28, no. 5, pp. 838-845, 2016.
[29] L.-Q. Tao et al., 'An intelligent artificial throat with sound-sensing ability based on laser induced graphene,' Nature communications, vol. 8, p. 14579, 2017.
[30] S. P. Singh, Y. Li, A. Be’er, Y. Oren, J. M. Tour, and C. J. Arnusch, 'Laser-induced graphene layers and electrodes prevents microbial fouling and exerts antimicrobial action,' ACS applied materials & interfaces, vol. 9, no. 21, pp. 18238-18247, 2017.
[31] R. Ye et al., 'In situ formation of metal oxide nanocrystals embedded in laser-induced graphene,' ACS nano, vol. 9, no. 9, pp. 9244-9251, 2015.
[32] Z. Zhang, M. Song, J. Hao, K. Wu, C. Li, and C. Hu, 'Visible light laser-induced graphene from phenolic resin: a new approach for directly writing graphene-based electrochemical devices on various substrates,' Carbon, vol. 127, pp. 287-296, 2018.
[33] P. Nayak, N. Kurra, C. Xia, and H. N. Alshareef, 'Highly efficient laser scribed graphene electrodes for on‐chip electrochemical sensing applications,' Advanced Electronic Materials, vol. 2, no. 10, p. 1600185, 2016.
[34] H. Liu et al., 'Flexible and Degradable Multi-modal Sensor Fabricated by Transferring Laser-induced Porous Carbon on Starch Film,' ACS Sustainable Chemistry & Engineering, 2019.
[35] R. Rahimi, M. Ochoa, W. Yu, and B. Ziaie, 'Highly stretchable and sensitive unidirectional strain sensor via laser carbonization,' ACS applied materials & interfaces, vol. 7, no. 8, pp. 4463-4470, 2015.
[36] X. Zang et al., 'Laser‐Induced Molybdenum Carbide–Graphene Composites for 3D Foldable Paper Electronics,' Advanced Materials, vol. 30, no. 26, p. 1800062, 2018.
[37] X. Liao et al., 'Flexible and printable paper-based strain sensors for wearable and large-area green electronics,' Nanoscale, vol. 8, no. 26, pp. 13025-13032, 2016.
[38] C. Casiraghi et al., 'Inkjet printed 2D-crystal based strain gauges on paper,' Carbon, vol. 129, pp. 462-467, 2018.
[39] H. Liu, H. Jiang, F. Du, D. Zhang, Z. Li, and H. Zhou, 'Flexible and degradable paper-based strain sensor with low cost,' ACS Sustainable Chemistry & Engineering, vol. 5, no. 11, pp. 10538-10543, 2017.
[40] X. Liao et al., 'Flexible and highly sensitive strain sensors fabricated by pencil drawn for wearable monitor,' Advanced Functional Materials, vol. 25, no. 16, pp. 2395-2401, 2015.
[41] J. M. Nassar et al., 'Paper skin multisensory platform for simultaneous environmental monitoring,' Advanced Materials Technologies, vol. 1, no. 1, p. 1600004, 2016.
[42] C. Antoine, P. Nygård, Ø. W. Gregersen, R. Holmstad, T. Weitkamp, and C. Rau, '3D images of paper obtained by phase-contrast X-ray microtomography: image quality and binarisation,' Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 490, no. 1-2, pp. 392-402, 2002.
[43] L. Cruz-Barba, S. Manolache, and F. Denes, 'Generation of Teflon-like layers on cellophane surfaces under atmospheric pressure non-equilibrium SF 6-plasma environments,' Polymer Bulletin, vol. 50, no. 5-6, pp. 381-387, 2003.
[44] M. Téllez-Téllez, G. Díaz-Godínez, and C. Sánchez, 'Physiology of a colony of Pleurotus pulmonarius grown on medium overlaid with a Cellophane membrane,' Applied microbiology and biotechnology, vol. 63, no. 2, pp. 212-216, 2003.
[45] N. P. Guerra, C. L. Macias, A. T. Agrasar, and L. Castro, 'Development of a bioactive packaging cellophane using Nisaplin® as biopreservative agent,' Letters in applied microbiology, vol. 40, no. 2, pp. 106-110, 2005.
[46] M. M. Hamedi, B. Ünal, E. Kerr, A. C. Glavan, M. T. Fernandez-Abedul, and G. M. Whitesides, 'Coated and uncoated cellophane as materials for microplates and open-channel microfluidics devices,' Lab on a Chip, vol. 16, no. 20, pp. 3885-3897, 2016.
[47] J. Wang, Y. Chen, S. Hao, X. Peng, and L. Hu, 'Deep learning for sensor-based activity recognition: A survey,' Pattern Recognition Letters, vol. 119, pp. 3-11, 2019.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65715-
dc.description.abstract在本論文中利用雷射誘導石墨烯(laser-induced graphene)之技術來做為紙基底感測器上之電極,由於紙基底材料可變形之特性,其石墨烯的表面結構受到紙基底之影響產生了不同的變化。本論文即探討雷射誘導之石墨烯在紙的不同側受到彎曲變形時,其作為電極使用之特性變化,發現電極位於凹面與凸面有兩種截然不同的電阻變化模式,當電極於凹面受到彎曲,其隨著彎曲程度變大,電阻值將會越低,而當電極於凸面受到彎曲,其電阻將比未彎曲前來的大,我們透過了材料間的重疊與裂縫來解釋此現象。而除了探討其內部物理模型外,由於其為紙基底材料,壽命較不穩定,故我們透過塗布高分子的方式來保護其結構,使其訊號穩定並讓使用壽命大幅延長,其亦使得電阻變化模式產生了改變。
由於上述研究之成功,我們試圖在透明的玻璃紙上也重現以上之結果,卻發現其有另一種複雜之物理機制。透過非對焦雷射,我們可使一些物質固定於玻璃紙上,例如加入一些導電墨水,可使玻璃紙也成為可設計電極形狀之材料,且由於玻璃紙會吸水的特性,我們發現其電阻值會隨著濕度產生變化,故我們亦探討其電阻與濕度變化間之關係。而除了固定導電墨水以外,利用相同方式我們也成功發展出其他應用,例如:將磁性物質固定於玻璃紙表面使其可以被磁鐵所吸引,以及將澱粉固定於玻璃紙表面,使其成為能檢測含碘液體之感測紙…等等。
最後將另外提出紙基底感測器於人工智慧手勢辨識上之應用,透過將添加高分子後的感測器安裝於手套上,量測不同手勢其訊號之變化,結合機器學習與深度學習來個別訓練感測器,使其具有能辨識手勢數字0到9之能力,有望開拓紙質感測器於各式領域之應用。
zh_TW
dc.description.abstractIn this study, laser-induced graphene(LIG) technology is used as an electrode on a paper-based sensor. Due to the deformable property of the paper-based material, the surface structure of graphene affected by the paper is different. We study the change of property of the graphene as an electrode when LIG is subjected to bending deformation on different sides of the paper. We found that the electrode located on the concave side and the convex side has two distinct resistance change modes. When the electrode is curved on the concave side, the resistance value will be lower as the curvature of paper becomes larger. When the electrode is curved on the convex side, the resistance value will be larger than unbent state. We explain this phenomenon through overlaps and cracks in material. Because it is paper-based material, its performance is not stable. In addition to discussing the internal physical model, we also protect the structure of electrode by coating polymer to make signal stable and extend the lifecycle significantly, which also affect the resistance change mode.
Based on the above study, we tried to reproduce the result of the cardboard on transparent cellophane, and we found that it has another complicated physical mechanism. By defocus laser, we can lock some materials on cellophane. For example, after absorbing some conductive inks, cellophane can also become a material that can be designed in the shape of electrode. Moreover, because cellophane could absorb water, we found that the resistance value changes with humidity, so that we study the relationship between resistance and humidity changes. Besides locking conductive inks, we have also successfully developed other applications in the same way, such as locking magnetic substances on the surface of cellophane so that it can be attracted by magnets, and locking starch on the surface of cellophane so that it could be a sensor which can detect iodine-containing liquid, and so on.
Finally, we apply paper-based sensors to artificial intelligence gesture recognition.
After installing the sensor which is coated polymer on the glove, we measure the signal change of different gestures, and train the sensors with machine learning and deep learning individually, so that it can recognize the gesture of number 0 to 9. It is expected to expand the application of paper-based sensor in various fields.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:00:59Z (GMT). No. of bitstreams: 1
ntu-109-R06543075-1.pdf: 2638425 bytes, checksum: 7f8f283783a7b18808ac4ddc7edfd6f1 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
摘要 ii
ABSTRACT iii
目錄 v
圖目錄 vii
表目錄 x
第一章 緒論 1
1.1 前言 1
1.2 石墨烯 2
1.3 雷射 3
1.3.1 雷射誘導技術 4
1.4 文獻回顧 6
1.4.1 雷射誘導產生石墨烯之原理與性質 6
1.4.2 LIG之拉曼分析 12
1.4.3 LIG之SEM 14
1.4.4 LIG之XPS分析 17
1.5 目前發展 18
1.5.1 LIG之應用 18
1.5.2 紙基底感測器 19
1.6 研究動機 20
第二章 實驗材料與設備 21
2.1 美國黑卡 21
2.2 玻璃紙 22
2.3 雷射切割機 23
第三章 實驗架設與方法 24
3.1 黑卡感測器製作與量測 24
3.2 表面塗布高分子 24
3.3 重複性測試與訊號擷取 25
3.4 手勢辨識應用之量測 26
3.5 玻璃紙感測器製作與量測 27
3.5.1 墨汁電極 27
3.5.2 濕度感測器 27
3.5.3 碘液感測器 28
第四章 實驗結果與應用 29
4.1 黑卡感測器之拉曼檢測 29
4.2 黑卡感測器在彎曲變形下之電阻變化特性 31
4.2.1 LIG於凹側彎曲時電阻值之變化 32
4.2.2 LIG於凸側彎曲電阻值之變化 34
4.2.3 黑卡感測器電阻模型討論 37
4.2.4 黑卡感測器之SEM 38
4.3 黑卡感測器塗布高分子之電阻變化特性 40
4.3.1 LIG添加高分子後於凹側彎曲時電阻值之變化 42
4.3.2 LIG添加高分子後於凸側彎曲時電阻值之變化 43
4.3.3 LIG添加高分子後之模型討論 46
4.4 玻璃紙感測器之結果 46
4.4.1 基礎特性 46
4.4.2 濕度變化與電阻關係 47
4.4.3 玻璃紙澱粉感測應用 49
4.5 黑卡感測器結合人工智慧應用於手勢辨識 50
4.5.1 人工智慧簡介 50
4.5.2 機器學習於手勢辨識結果 51
4.5.3 深度學習於手勢辨識結果 53
第五章 總結與未來展望 56
REFERENCE 57
附錄 60
dc.language.isozh-TW
dc.subject紙基底感測器zh_TW
dc.subject雷射誘導石墨烯zh_TW
dc.subject高分子zh_TW
dc.subject玻璃紙zh_TW
dc.subject人工智慧zh_TW
dc.subject手勢辨識zh_TW
dc.subjectartificial intelligenceen
dc.subjectlaser-induced grapheneen
dc.subjectpaper-based sensoren
dc.subjectpolymeren
dc.subjectcellophaneen
dc.subjectgesture recognitionen
dc.title在紙基底材料上透過雷射誘導產生電極之研究zh_TW
dc.titleStudy of Laser-Induced Electrode on Paper-Based Materialsen
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree碩士
dc.contributor.oralexamcommittee許聿翔(Yu-Hsiang Hsu),陳志鴻(Chih-Hung Chen)
dc.subject.keyword雷射誘導石墨烯,紙基底感測器,高分子,玻璃紙,人工智慧,手勢辨識,zh_TW
dc.subject.keywordlaser-induced graphene,paper-based sensor,polymer,cellophane,artificial intelligence,gesture recognition,en
dc.relation.page61
dc.identifier.doi10.6342/NTU202000490
dc.rights.note有償授權
dc.date.accepted2020-02-17
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-109-1.pdf
  未授權公開取用
2.58 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved