請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65711完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡政達(Jeng-Da Chai) | |
| dc.contributor.author | Jian-Min Huang | en |
| dc.contributor.author | 黃建閔 | zh_TW |
| dc.date.accessioned | 2021-06-17T00:00:43Z | - |
| dc.date.available | 2015-07-27 | |
| dc.date.copyright | 2012-07-27 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-07-16 | |
| dc.identifier.citation | [1] P. Hohenberg, W. Kohn, Phys. Rev. 136 (1964) B864.
[2] W. Kohn, L. J. Sham, Phys. Rev. 140 (1965) A1133. [3] M.E. Casida, Recent Advances in Density Functional Methods, World Scien-tific, Singapore, 1995. Pt. 1. [4] E.K.U. Gross, J.F. Dobson, M. Petersilka, in Density Functional Theory II,Springer, Heidelberg, 1996. [5] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865. [6] J. Tao, J.P. Perdew, V.N. Staroverov, G.E. Scuseria, Phys. Rev. Lett. 91 (2003) 146401. [7] A.D. Becke, Phys. Rev. A 38 (1988) 3098. [8] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785. [9] P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, J. Phys. Chem. 98 (1994) 11623. [10] Y. Zhao, N.E. Schultz, D.G. Truhlar, J. Chem. Phys. 123 (2005) 161103. [11] R.G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford University Press, Oxford, 1989. [12] R.M. Dreizler, E.K.U. Gross, Density Functional Theory: An Ap- proach to the Quantum Many Body Problem, Springer-Verlag, Berlin, 1990. [13] A.D. Becke, J. Chem. Phys. 98 (1993) 5648. [14] P.S. Svendsen, U. von Barth, Phys. Rev. B 54 (1996) 17402. [15] A.D. Becke, Int. J. Quantum Chem. 23 (1983) 1915. [16] T.V. Voorhis, G. E. Scuseria, J. Chem. Phys. 109 (1998) 400. [17] J.P. Perdew, S. Kurth, A.c.v. Zupan, P. Blaha, Phys. Rev. Lett. 82 (1999) 2544. [18] E. Fermi, Z. Phys. 48 (1928) 73. [19] C. von Weizs ̈cker, Z. Phys. 36 (1935) 779. [20] D. Garcıa-Aldea, J. E. Alvarellos, J. Chem. Phys. 127 (2007) 144109. [21] J.P. Perdew, Y. Wang, Phys. Rev. B 45 (1992) 13244 – 13249. [22] H. Stoll, C.M.E. Pavlidou, H. Preuss, Theor. Chim. Acta 49 (1978) 143. [23] A.D. Becke, J. Chem. Phys. 104 (1996) 1040. [24] J.-D. Chai, M. Head-Gordon, J. Chem. Phys. 128 (2008) 084106. [25] P. Jurecka, J. Sponer, J. Cerny, P. Hobza, Phys. Chem. Chem. Phys. 8 (2006) [26] L.A. Curtiss, K. Raghavachari, P.C. Redfern, J.A. Pople, J. Chem. Phys. 106 (1997) 1063. [27] L.A. Curtiss, P.C. Redfern, K. Raghavachari, J.A. Pople, J. Chem. Phys. 109 (1998) 42. [28] L.A. Curtiss, K. Raghavachari, P.C. Redfern, J.A. Pople, J. Chem. Phys. 112 (2000) 7374. [29] J.A. Pople, M. Head-Gordon, D.J. Fox, K. Raghavachari, L.A. Curtiss, J.Chem. Phys. 90 (1989) 5622. [30] Y. Zhao, B.J. Lynch, D.G. Truhlar, J. Phys. Chem. A 108 (2004) 2715. [31] Y. Zhao, N. Gonzalez-Garcia, D. G. Truhlar, J. Phys. Chem. A 109 (2005) 2012. [32] Y. Zhao, N. Gonzalez-Garcia, D. G. Truhlar, J. Phys. Chem. A 110 (2006) 4942. [33] C.W. Murray, N.C. Handy, G.J. Laming, Mol. Phys. 78 (1993) 997. [34] V. I. Lebedev, Zh. Vychisl. Mat. Mat. Fiz 15 (1975); V. I. Lebedev, Zh. Vychisl. Mat. Mat. Fiz 16 (1976); Sibirsk, Zh. Vychisl. Mat. Mat. Fiz 18 (1977). [35] Y. Shao, L.F. Molnar, Y. Jung, J. Kussmann, C. Ochsenfeld, S.T. Brown, A.T. Gilbert, L.V. Slipchenko, S.V. Levchenko, D.P. O’Neill, R.A. DiStasio Jr, R.C. Lochan, T. Wang, G.J. Beran, N.A. Besley, J.M. Herbert, C. Yeh Lin, T. Van Voorhis, S. Hung Chien, A. Sodt, R.P. Steele, V.A. Rassolov, P. E. Maslen, P. P. Korambath, R. D. Adamson, B. Austin, J. Baker, E.F.C. Byrd, H. Dachsel, R.J. Doerksen, A. Dreuw, B.D. Dunietz, A.D. Dutoi, T.R. Furlani, S.R. Gwaltney, A. Heyden, S. Hirata, C.-P. Hsu, G. Kedziora, R.Z. Khalliulin, P. Klunzinger, A.M. Lee, M.S. Lee, W. Liang, I. Lotan, N. Nair, B. Peters, E.I. Proynov, P.A. Pieniazek, Y. Min Rhee, J. Ritchie, E. Rosta, C. David Sherrill, A.C. Simmonett, J.E. Subotnik, H. Lee Woodcock III, W. Zhang, A.T. Bell, A.K. Chakraborty, D.M. Chipman, F.J. Keil, A. Warshel, W.J. Hehre, H.F. Schaefer III, J. Kong, A.I. Krylov, P.M.W. Gill, M. Head- Gordon, Phys. Chem. Chem. Phys. 8 (2006) 3172. [36] L.A. Curtiss, P.C. Redfern, K. Raghavachari, J. Chem. Phys. 123 (2005) 124107. [37] L.A. Curtiss, P.C. Redfern, K. Raghavachari, J. Chem. Phys. 126 (2007) 084108. [38] V.I. Lebedev, D.N. Laikov, Dokl. Math 59 (1999) 477. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65711 | - |
| dc.description.abstract | In addition to the density ρ and its gradient ▽ρ,
the meta-generalized gradient approximation (meta-GGA) functional depends on the Kohn-Sham kinetic energy density (KS KED) τ or the Laplacian of the density. In the present work, we study the importance of the KS KED relative to the meta-GGA functional. We replace the KS KED with some approximated KEDs and compare the performance of the original meta-GGA functional and the modified functionals. We choose the M05 functional and replace the KS KED with the approximated orbital free KEDs to generate a series of modified M05 type functionals. The result shows the full τ dependent functional (M05*) is superior to other modified M05 type functionals. The introduce of the KS kinetic energy density τ gives more accurate exchange-correlation functional. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T00:00:43Z (GMT). No. of bitstreams: 1 ntu-101-R99222028-1.pdf: 258473 bytes, checksum: 605000e5af025ce8c3a27dcfbba4e0c4 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 1 Introduction 9
2 Theory 12 2.1 Rationale for Substituting KS KED 12 2.1.1 The TFW model 13 2.2 The exchange correlation functional 15 2.2.1 Exchange functional 15 2.2.2 Correlation functional 15 2.2.3 Hybrid exchange correlation functional 17 2.3 Optimization of the Modified Hybrid Exchange Correlation Functional 17 2.4 Results for the Training Set 17 2.4.1 Thermochemistry 18 2.4.2 Kinetics 18 2.5 Results for Test Sets 19 2.5.1 Atomization energies 21 2.5.2 Reaction energies 21 3 Summary and Conclusions 23 3.1 Conclusion 23 Bibliography 25 A Supplementary Material 29 | |
| dc.language.iso | en | |
| dc.subject | 密度泛函理論 | zh_TW |
| dc.subject | 動能密度 | zh_TW |
| dc.subject | DFT | en |
| dc.subject | Kohn-Sham kinetic energy density | en |
| dc.title | Kohn-Sham 動能密度在 meta-generalized gradient
近似中的角色 | zh_TW |
| dc.title | Role of the Kohn-Sham kinetic energy density in
meta-generalized gradient approximations | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 趙聖德(Sheng-Der Chao),張秀華(A. H. H. Chang) | |
| dc.subject.keyword | 密度泛函理論,動能密度, | zh_TW |
| dc.subject.keyword | DFT,Kohn-Sham kinetic energy density, | en |
| dc.relation.page | 43 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-07-16 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 252.42 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
