Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65711
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡政達(Jeng-Da Chai)
dc.contributor.authorJian-Min Huangen
dc.contributor.author黃建閔zh_TW
dc.date.accessioned2021-06-17T00:00:43Z-
dc.date.available2015-07-27
dc.date.copyright2012-07-27
dc.date.issued2012
dc.date.submitted2012-07-16
dc.identifier.citation[1] P. Hohenberg, W. Kohn, Phys. Rev. 136 (1964) B864.
[2] W. Kohn, L. J. Sham, Phys. Rev. 140 (1965) A1133.
[3] M.E. Casida, Recent Advances in Density Functional Methods, World Scien-tific, Singapore, 1995. Pt. 1.
[4] E.K.U. Gross, J.F. Dobson, M. Petersilka, in Density Functional Theory II,Springer, Heidelberg, 1996.
[5] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.
[6] J. Tao, J.P. Perdew, V.N. Staroverov, G.E. Scuseria, Phys. Rev. Lett. 91 (2003) 146401.
[7] A.D. Becke, Phys. Rev. A 38 (1988) 3098.
[8] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785.
[9] P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, J. Phys. Chem. 98 (1994) 11623.
[10] Y. Zhao, N.E. Schultz, D.G. Truhlar, J. Chem. Phys. 123 (2005) 161103.
[11] R.G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford University Press, Oxford, 1989.
[12] R.M. Dreizler, E.K.U. Gross, Density Functional Theory: An Ap- proach to the Quantum Many Body Problem, Springer-Verlag, Berlin, 1990.
[13] A.D. Becke, J. Chem. Phys. 98 (1993) 5648.
[14] P.S. Svendsen, U. von Barth, Phys. Rev. B 54 (1996) 17402.
[15] A.D. Becke, Int. J. Quantum Chem. 23 (1983) 1915.
[16] T.V. Voorhis, G. E. Scuseria, J. Chem. Phys. 109 (1998) 400.
[17] J.P. Perdew, S. Kurth, A.c.v. Zupan, P. Blaha, Phys. Rev. Lett. 82 (1999) 2544.
[18] E. Fermi, Z. Phys. 48 (1928) 73.
[19] C. von Weizs ̈cker, Z. Phys. 36 (1935) 779.
[20] D. Garcıa-Aldea, J. E. Alvarellos, J. Chem. Phys. 127 (2007) 144109.
[21] J.P. Perdew, Y. Wang, Phys. Rev. B 45 (1992) 13244 – 13249.
[22] H. Stoll, C.M.E. Pavlidou, H. Preuss, Theor. Chim. Acta 49 (1978) 143.
[23] A.D. Becke, J. Chem. Phys. 104 (1996) 1040.
[24] J.-D. Chai, M. Head-Gordon, J. Chem. Phys. 128 (2008) 084106.
[25] P. Jurecka, J. Sponer, J. Cerny, P. Hobza, Phys. Chem. Chem. Phys. 8 (2006)
[26] L.A. Curtiss, K. Raghavachari, P.C. Redfern, J.A. Pople, J. Chem. Phys. 106 (1997) 1063.
[27] L.A. Curtiss, P.C. Redfern, K. Raghavachari, J.A. Pople, J. Chem. Phys. 109 (1998) 42.
[28] L.A. Curtiss, K. Raghavachari, P.C. Redfern, J.A. Pople, J. Chem. Phys. 112 (2000) 7374.
[29] J.A. Pople, M. Head-Gordon, D.J. Fox, K. Raghavachari, L.A. Curtiss, J.Chem. Phys. 90 (1989) 5622.
[30] Y. Zhao, B.J. Lynch, D.G. Truhlar, J. Phys. Chem. A 108 (2004) 2715.
[31] Y. Zhao, N. Gonzalez-Garcia, D. G. Truhlar, J. Phys. Chem. A 109 (2005) 2012.
[32] Y. Zhao, N. Gonzalez-Garcia, D. G. Truhlar, J. Phys. Chem. A 110 (2006) 4942.
[33] C.W. Murray, N.C. Handy, G.J. Laming, Mol. Phys. 78 (1993) 997.
[34] V. I. Lebedev, Zh. Vychisl. Mat. Mat. Fiz 15 (1975); V. I. Lebedev, Zh. Vychisl.
Mat. Mat. Fiz 16 (1976); Sibirsk, Zh. Vychisl. Mat. Mat. Fiz 18 (1977).
[35] Y. Shao, L.F. Molnar, Y. Jung, J. Kussmann, C. Ochsenfeld, S.T. Brown,
A.T. Gilbert, L.V. Slipchenko, S.V. Levchenko, D.P. O’Neill, R.A. DiStasio
Jr, R.C. Lochan, T. Wang, G.J. Beran, N.A. Besley, J.M. Herbert, C. Yeh
Lin, T. Van Voorhis, S. Hung Chien, A. Sodt, R.P. Steele, V.A. Rassolov, P.
E. Maslen, P. P. Korambath, R. D. Adamson, B. Austin, J. Baker, E.F.C.
Byrd, H. Dachsel, R.J. Doerksen, A. Dreuw, B.D. Dunietz, A.D. Dutoi, T.R.
Furlani, S.R. Gwaltney, A. Heyden, S. Hirata, C.-P. Hsu, G. Kedziora, R.Z.
Khalliulin, P. Klunzinger, A.M. Lee, M.S. Lee, W. Liang, I. Lotan, N. Nair,
B. Peters, E.I. Proynov, P.A. Pieniazek, Y. Min Rhee, J. Ritchie, E. Rosta,
C. David Sherrill, A.C. Simmonett, J.E. Subotnik, H. Lee Woodcock III, W.
Zhang, A.T. Bell, A.K. Chakraborty, D.M. Chipman, F.J. Keil, A. Warshel,
W.J. Hehre, H.F. Schaefer III, J. Kong, A.I. Krylov, P.M.W. Gill, M. Head-
Gordon, Phys. Chem. Chem. Phys. 8 (2006) 3172.
[36] L.A. Curtiss, P.C. Redfern, K. Raghavachari, J. Chem. Phys. 123 (2005) 124107.
[37] L.A. Curtiss, P.C. Redfern, K. Raghavachari, J. Chem. Phys. 126 (2007) 084108.
[38] V.I. Lebedev, D.N. Laikov, Dokl. Math 59 (1999) 477.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65711-
dc.description.abstractIn addition to the density ρ and its gradient ▽ρ,
the meta-generalized gradient approximation (meta-GGA) functional depends on the Kohn-Sham kinetic energy density (KS KED) τ or the Laplacian of the density.
In the present work, we study the importance of the KS KED relative to the meta-GGA functional. We replace the KS KED with some approximated KEDs and compare the performance of the original meta-GGA functional and the modified functionals. We choose the M05 functional and replace the KS KED with the approximated orbital free KEDs to generate a series of modified M05 type functionals. The result shows the full τ dependent functional (M05*) is superior to other modified M05 type functionals. The introduce of the KS kinetic energy density τ gives more accurate exchange-correlation functional.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T00:00:43Z (GMT). No. of bitstreams: 1
ntu-101-R99222028-1.pdf: 258473 bytes, checksum: 605000e5af025ce8c3a27dcfbba4e0c4 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents1 Introduction 9
2 Theory 12
2.1 Rationale for Substituting KS KED 12
2.1.1 The TFW model 13
2.2 The exchange correlation functional 15
2.2.1 Exchange functional 15
2.2.2 Correlation functional 15
2.2.3 Hybrid exchange correlation functional 17
2.3 Optimization of the Modified Hybrid Exchange
Correlation Functional 17
2.4 Results for the Training Set 17
2.4.1 Thermochemistry 18
2.4.2 Kinetics 18
2.5 Results for Test Sets 19
2.5.1 Atomization energies 21
2.5.2 Reaction energies 21
3 Summary and Conclusions 23
3.1 Conclusion 23
Bibliography 25
A Supplementary Material 29
dc.language.isoen
dc.subject密度泛函理論zh_TW
dc.subject動能密度zh_TW
dc.subjectDFTen
dc.subjectKohn-Sham kinetic energy densityen
dc.titleKohn-Sham 動能密度在 meta-generalized gradient
近似中的角色
zh_TW
dc.titleRole of the Kohn-Sham kinetic energy density in
meta-generalized gradient approximations
en
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee趙聖德(Sheng-Der Chao),張秀華(A. H. H. Chang)
dc.subject.keyword密度泛函理論,動能密度,zh_TW
dc.subject.keywordDFT,Kohn-Sham kinetic energy density,en
dc.relation.page43
dc.rights.note有償授權
dc.date.accepted2012-07-16
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
252.42 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved