Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/656
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭卜壬(Pu-Jen Cheng)
dc.contributor.authorShao-Yu Luen
dc.contributor.author呂紹瑀zh_TW
dc.date.accessioned2021-05-11T04:53:22Z-
dc.date.available2020-08-18
dc.date.available2021-05-11T04:53:22Z-
dc.date.copyright2019-08-18
dc.date.issued2019
dc.date.submitted2019-08-13
dc.identifier.citationD. Bobrow, “Natural language input for a computer problem solving system,” in Semantic information processing, M. Minsky, Ed. MIT Press, 1964, pp. 146–226.
E. A. Feigenbaum and J. Feldman, Computers and Thought. New York, NY, USA: McGraw-Hill, Inc., 1963.
E. Charniak, “Computer solution of calculus word problems,” in IJCAI, 1969, pp. 303–316
D. Goldwasser and D. Roth, “Learning from natural instructions,” in IJCAI, 2011, pp. 1794–1800
T. Kwiatkowski, E. Choi, Y. Artzi, and L. S. Zettlemoyer, “Scaling semantic parsers with on-the-fly ontology matching,” in EMNLP, 2013, pp. 1545–1556.
N. Kushman, L. Zettlemoyer, R. Barzilay, and Y. Artzi, “Learning to automatically solve algebra word problems,” in ACL, 2014, pp. 271– 281.
L. Zhou, S. Dai, and L. Chen, “Learn to solve algebra word problems using quadratic programming,” in EMNLP, 2015, pp. 817–822.
D. Huang, S. Shi, J. Yin, and C.-Y. Lin, “Learning fine-grained expressions to solve math word problems,” in EMNLP, 2017, pp. 805–814
S. Roy and D. Roth, “Solving general arithmetic word problems,” in EMNLP, 2015, pp. 1743–1752.
R. Koncel-Kedziorski, H. Hajishirzi, A. Sabharwal, O. Etzioni, and S. D. Ang, “Parsing algebraic word problems into equations,” TACL, vol. 3, pp. 585–597, 2015.
S. Roy, S. Upadhyay, and D. Roth, “Equation parsing : Mapping sentences to grounded equations,” in EMNLP, 2016, pp. 1088–1097.
S. Roy and D. Roth, “Unit dependency graph and its application to arithmetic word problem solving,” in AAAI. AAAI Press, 2017, pp. 3082–3088
Y. Wang, X. Liu, and S. Shi, “Deep neural solver for math word problems,” in EMNLP, 2017, pp. 845–854.
L. Wang, Y. Wang, D. Cai, D. Zhang, and X. Liu, “Translating math word problem to expression tree,” in EMNLP. Association for Computational Linguistics, 2018, pp. 1064–1069.
T. Chiang and Y. Chen, “Semantically-aligned equation generation for solving and reasoning math word problems,” CoRR, vol. abs/1811.00720, 2018.
L. Wang, D. Zhang, J. Zhang, X. Xu, L. Gao, B. Dai, and H. T. Shen, “Template-based mathword problem solvers with recursive neural networks,” in AAAI. AAAI Press, 2019
Sepp Hochreiter and Jurgen Schmidhuber. 1997. ¨ Long short-term memory. Neural Computation, 9(8):1735–1780.
Thang Luong, Hieu Pham, and Christopher D. Manning. 2015. Effective approaches to attention-based neural machine translation. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 1412–1421.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/handle/123456789/656-
dc.description.abstract近年來隨著深度學習的發展,數學應用題的自動求解又再度引發研究上的關注。基於深度學習的序列生成模型被大量的應用在生成算式模板,不僅解決了傳統基於模板方法的限制,也是目前的主流解法之一。但鮮少有人試圖將生成模型與基於樹的方法結合。因此本文提出一個結合兩者的方法。我們希望模型可以學習到題目中的數字、所求目標以及過程中產出的數字三者的語意表示。並模仿人類真實的解題情境,將所有運算的中間產出也視為可選擇的數字,供模型學習如何進行進階的運算。
在大型的中文數據集 Math23K的初步實驗結果中,我們的模型比起傳統基於注意力機制的seq2seq生成模型,正確率上升超過7%。並在後續的實驗中,分析模型裡的一些機制如算式歸一化、數字特徵的自注意力機制,兩者會如何影響準確性。然後在最後一個實驗裡顯示,透過加強選擇數字的能力,模型能學習到類推與抽象化運算的能力,解決資料集中罕見但運算複雜而冗長的題型。即便取得了部分的成功,在一些失敗例子的探討上,我們也揭露了這個模型本身策略帶來的優勢與限制,以及這個領域的主要瓶頸。並以未來可以改善的方向作結。
zh_TW
dc.description.abstractIn recent years, the study of solving math word problem automatically receive much attention once again. Deep Neural Networks based method reach a new higher score on large-scale datasets. The generator based on seq2seq model combined with template-based method becomes the mainstream method for this task. However, few people try to introduce the deep learning to Tree-based model.
This paper propose a method to bridge the gap of tree-based method and deep learning method. We hope that model could learn the semantic meanings of quantities in a question, target of calculation and number produced during the process. By strengthening the ability of choosing number, model also perform the analogy and abstraction during complex process of computation.
The preliminary experiments are conducted in a benchmark dataset Math23K, and our model outperforms the seq2seq model with attention mechanism over about 7% accuracy, demonstrating the effectiveness of the selection strategy.
en
dc.description.provenanceMade available in DSpace on 2021-05-11T04:53:22Z (GMT). No. of bitstreams: 1
ntu-108-R06922099-1.pdf: 1582003 bytes, checksum: 3f0a9906f6381f6c0c496c36caf170a0 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
一、 研究簡介 1
二、 相關研究 4
三、 研究方法 6
3.1 前處理 7
3.1.1 題目敘述的前處理 7
3.1.2 算式的前處理 7
3.2 模型架構 9
3.2.1 編碼階段 (Encode) 9
3.2.2 池架構 (Pool) 10
3.2.3 解碼階段 (Decode) 11
3.2.4 數字選擇器 (Number Selector) 12
3.2.5 合成器 (Combinator) 14
3.3 損失函數 (Loss Function) 14
四、 實驗結果 16
4.1 實驗方法與分析 16
4.1.1 資料集簡介 16
4.1.2 實驗設計與比較 16
4.1.3 實驗結果分析 17
4.2 案例分析 20
4.2.1 等價算式 20
4.2.2 語意模糊與領域知識 21
4.2.3 不正確的語意理解 22
五、 結論與未來研究方向 23
六、 參考文獻 25
dc.language.isozh-TW
dc.subject二元表示樹zh_TW
dc.subject數學應用問題zh_TW
dc.subject自然語言處理zh_TW
dc.subject算式生成器zh_TW
dc.subject數字語義理解zh_TW
dc.subject序列到序列模型zh_TW
dc.subjectmath word problemsen
dc.subjectnatural language processingen
dc.subjectseq2seq modelen
dc.subjectnumber semantic learningen
dc.subjectequation generatoren
dc.subjectexpression treeen
dc.title用樹狀結構的算式生成器解數學問題zh_TW
dc.titleTree-Structured Equation Generator for Math Word Problems With Deep Inferenceen
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王正豪(Jenq-Haur Wang),盧文祥(Wen-Hsiang Lu)
dc.subject.keyword數學應用問題,二元表示樹,算式生成器,數字語義理解,序列到序列模型,自然語言處理,zh_TW
dc.subject.keywordmath word problems,expression tree,equation generator,number semantic learning,seq2seq model,natural language processing,en
dc.relation.page26
dc.identifier.doi10.6342/NTU201902039
dc.rights.note同意授權(全球公開)
dc.date.accepted2019-08-14
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-108-1.pdf1.54 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved