請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65690完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 高照村(Jao-Tsuen Kao) | |
| dc.contributor.author | Xiu-Ru Lin | en |
| dc.contributor.author | 林秀如 | zh_TW |
| dc.date.accessioned | 2021-06-16T23:59:18Z | - |
| dc.date.available | 2014-09-18 | |
| dc.date.copyright | 2012-09-18 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-07-17 | |
| dc.identifier.citation | 1. Hokanson JE, Austin MA: Plasma triglyceride level is a risk factor for cardiovascular disease independent of high-density lipoprotein cholesterol level: a meta-analysis of population-based prospective studies. Journal of Cardiovascular Risk 1996, 3:213-219.
2. Jonkers IJ, Smelt AH, van der Laarse A: Hypertriglyceridemia: associated risks and effect of drug treatment. Am J Cardiovasc Drugs 2001, 1:455-466. 3. Heller DA, de Faire U, Pedersen NL, Dahlen G, McClearn GE: Genetic and Environmental Influences on Serum Lipid Levels in Twins. N Engl J Med 1993, 328:1150-1156. 4. Emi M, Wilson D, Iverius P, Wu L, Hata A, Hegele R, Williams R, Lalouel J: Missense mutation (Gly----Glu188) of human lipoprotein lipase imparting functional deficiency. J Biol Chem 1990, 265:5910-5916. 5. Jong MC, Hofker MH, Havekes LM: Role of ApoCs in lipoprotein metabolism: functional differences between ApoC1, ApoC2, and ApoC3. Arterioscler Thromb Vasc Biol 1999, 19:472-484. 6. Hahn PF: Abolishment of alimentary lipemia following injection of heparin. Science 1943, 98:19-20. 7. Anfinsen CB, Boyle E, Brown RK: The Role of Heparin in Lipoprotein Metabolism. Science 1952, 115:583-586. 8. Korn ED: Clearing factor, a heparin-activated lipoprotein lipase. I. Isolation and characterization of the enzyme from normal rat heart. J Biol Chem 1955, 215:1-14. 9. Havel RJ, Gordon RS, Jr.: Idiopathic hyperlipemia: metabolic studies in an affected family. Journal of Clinical Investigation 1960, 39:1777-1790. 10. Krauss RM, Windmueller HG, Levy RI, Fredrickson DS: Selective measurement of two different triglyceride lipase activities in rat postheparin plasma. Journal of Lipid Research 1973, 14:286-295. 11. Breckenridge WC, Little JA, Steiner G, Chow A, Poapst M: Hypertriglyceridemia associated with deficiency of apolipoprotein C-II. N Engl J Med 1978, 298:1265-1273. 12. Sparkes RS, Zollman S, Klisak I, Kirchgessner TG, Komaromy MC, Mohandas T, Schotz MC, Lusis AJ: Human genes involved in lipolysis of plasma lipoproteins: mapping of loci for lipoprotein lipase to 8p22 and hepatic lipase to 15q21. Genomics 1987, 1:138-144. 13. Wion KL, Kirchgessner TG, Lusis AJ, Schotz MC, Lawn RM: Human lipoprotein lipase complementary DNA sequence. Science 1987, 235:1638-1641. 14. Deeb SS, Peng RL: Structure of the human lipoprotein lipase gene. Biochemistry 1989, 28:4131-4135. 15. Wang CS, Hartsuck J, McConathy WJ: Structure and functional properties of lipoprotein lipase. Biochim Biophys Acta 1992, 1123:1-17. 16. Wong H, Davis RC, Thuren T, Goers JW, Nikazy J, Waite M, Schotz MC: Lipoprotein lipase domain function. J Biol Chem 1994, 269:10319-10323. 17. Braun JE, Severson DL: Regulation of the synthesis, processing and translocation of lipoprotein lipase. Biochemical Journal 1992, 287 ( Pt 2):337-347. 18. Camps L, Reina M, Llobera M, Vilaro S, Olivecrona T: Lipoprotein lipase: cellular origin and functional distribution. American Journal of Physiology 1990, 258:C673-681. 19. Bengtsson G, Olivecrona T: Interaction of lipoprotein lipase with heparin-Sepharose. Evaluation of conditions for affinity binding. Biochemical Journal 1977, 167:109-119. 20. Eckel RH: Lipoprotein lipase. A multifunctional enzyme relevant to common metabolic diseases. N Engl J Med 1989, 320:1060-1068. 21. Hussain MM, Kancha RK, Zhou Z, Luchoomun J, Zu H, Bakillah A: Chylomicron assembly and catabolism: role of apolipoproteins and receptors. Biochim Biophys Acta 1996, 1300:151-170. 22. Fielding PE FC: Dynamics of lipoprotein transport in the circulatory system. Biochemistry of lipids, lipoproteins and membranes 1991:427-459. 23. Nilsson-Ehle P, Garfinkel AS, Schotz MC: Lipolytic enzymes and plasma lipoprotein metabolism. Annu Rev Biochem 1980, 49:667-693. 24. Vannier C, Ailhaud G: Biosynthesis of lipoprotein lipase in cultured mouse adipocytes. II. Processing, subunit assembly, and intracellular transport. J Biol Chem 1989, 264:13206-13216. 25. Wang CS, McConathy WJ, Kloer HU, Alaupovic P: Modulation of lipoprotein lipase activity by apolipoproteins. Effect of apolipoprotein C-III. Journal of Clinical Investigation 1985, 75:384-390. 26. Rensen PCN, van Berkel TJC: Apolipoprotein E Effectively Inhibits Lipoprotein Lipase-mediated Lipolysis of Chylomicron-like Triglyceride-rich Lipid Emulsions in Vitro and in Vivo. J Biol Chem 1996, 271:14791-14799. 27. Mead JR, Cryer A, Ramji DP: Lipoprotein lipase, a key role in atherosclerosis? Febs Letters 1999, 462:1-6. 28. Mead JR, Ramji DP: The pivotal role of lipoprotein lipase in atherosclerosis. Cardiovasc Res 2002, 55:261-269. 29. Goldberg IJ: Lipoprotein lipase and lipolysis: central roles in lipoprotein metabolism and atherogenesis. Journal of Lipid Research 1996, 37:693-707. 30. Mamputu JC, Levesque L, Renier G: Proliferative effect of lipoprotein lipase on human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 2000, 20:2212-2219. 31. Renier G, Skamene E, DeSanctis JB, Radzioch D: Induction of tumor necrosis factor alpha gene expression by lipoprotein lipase. Journal of Lipid Research 1994, 35:271-278. 32. Esenabhalu VE, Cerimagic M, Malli R, Osibow K, Levak-Frank S, Frieden M, Sattler W, Kostner GM, Zechner R, Graier WF: Tissue-specific expression of human lipoprotein lipase in the vascular system affects vascular reactivity in transgenic mice. Br J Pharmacol 2002, 135:143-154. 33. Lucas M, Iverius PH, Strickland DK, Mazzone T: Lipoprotein lipase reduces secretion of apolipoprotein E from macrophages. J Biol Chem 1997, 272:13000-13005. 34. Iverius PH, Ostlund-Lindqvist AM: Lipoprotein lipase from bovine milk. Isolation procedure, chemical characterization, and molecular weight analysis. J Biol Chem 1976, 251:7791-7795. 35. Elbein AD: Glycosidase inhibitors: inhibitors of N-linked oligosaccharide processing. Federation Proceedings 1991, 5:3055-3063. 36. Fuhrmann U, Bause E, Ploegh H: Inhibitors of oligosaccharide processing. Biochim Biophys Acta 1985, 825:95-110. 37. Rothman JE, Orci L: Movement of proteins through the Golgi stack: a molecular dissection of vesicular transport. Federation Proceedings 1990, 4:1460-1468. 38. Busca R, Martinez M, Vilella E, Pognonec P, Deeb S, Auwerx J, Reina M, Vilaro S: The mutation Gly142-->Glu in human lipoprotein lipase produces a missorted protein that is diverted to lysosomes. J Biol Chem 1996, 271:2139-2146. 39. Willson TM, Brown PJ, Sternbach DD, Henke BR: The PPARs: from orphan receptors to drug discovery. J Med Chem 2000, 43:527-550. 40. Mangelsdorf DJ, Evans RM: The RXR heterodimers and orphan receptors. Cell 1995, 83:841-850. 41. A IJ, Jeannin E, Wahli W, Desvergne B: Polarity and specific sequence requirements of peroxisome proliferator-activated receptor (PPAR)/retinoid X receptor heterodimer binding to DNA. A functional analysis of the malic enzyme gene PPAR response element. J Biol Chem 1997, 272:20108-20117. 42. Braissant O, Foufelle F, Scotto C, Dauca M, Wahli W: Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat. Endocrinology 1996, 137:354-366. 43. Basu-Modak S, Braissant O, Escher P, Desvergne B, Honegger P, Wahli W: Peroxisome proliferator-activated receptor beta regulates acyl-CoA synthetase 2 in reaggregated rat brain cell cultures. J Biol Chem 1999, 274:35881-35888. 44. Hansen JB, Zhang H, Rasmussen TH, Petersen RK, Flindt EN, Kristiansen K: Peroxisome proliferator-activated receptor delta (PPARdelta )-mediated regulation of preadipocyte proliferation and gene expression is dependent on cAMP signaling. J Biol Chem 2001, 276:3175-3182. 45. Jehl-Pietri C, Bastie C, Gillot I, Luquet S, Grimaldi PA: Peroxisome-proliferator-activated receptor delta mediates the effects of long-chain fatty acids on post-confluent cell proliferation. Biochemical Journal 2000, 350 Pt 1:93-98. 46. Desvergne B, Wahli W: Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev 1999, 20:649-688. 47. Schoonjans K, Staels B, Auwerx J: Role of the peroxisome proliferator-activated receptor (PPAR) in mediating the effects of fibrates and fatty acids on gene expression. Journal of Lipid Research 1996, 37:907-925. 48. Schoonjans K, Peinado-Onsurbe J, Lefebvre AM, Heyman RA, Briggs M, Deeb S, Staels B, Auwerx J: PPARalpha and PPARgamma activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. EMBO J 1996, 15:5336-5348. 49. Langlois S, Deeb S, Brunzell JD, Kastelein JJ, Hayden MR: A major insertion accounts for a significant proportion of mutations underlying human lipoprotein lipase deficiency. Proc Natl Acad Sci U S A 1989, 86:948-952. 50. Murthy V, Julien P, Gagne C: Molecular pathobiology of the human lipoprotein lipase gene. Pharmacol Ther 1996, 70:101-135. 51. Nickerson DA, Taylor SL, Weiss KM, Clark AG, Hutchinson RG, Stengard J, Salomaa V, Vartiainen E, Boerwinkle E, Sing CF: DNA sequence diversity in a 9.7-kb region of the human lipoprotein lipase gene. Nat Genet 1998, 19:233-240. 52. Harlan WR, Jr., Winesett PS, Wasserman AJ: Tissue lipoprotein lipase in normal individuals and in individuals with exogenous hypertriglyceridemia and the relationship of this enzyme to assimilation of fat. Journal of Clinical Investigation 1967, 46:239-247. 53. Fruchart JC, Brewer HB, Jr., Leitersdorf E: Consensus for the use of fibrates in the treatment of dyslipoproteinemia and coronary heart disease. Fibrate Consensus Group. Am J Cardiol 1998, 81:912-917. 54. Zimetbaum P, Frishman WH, Kahn S: Effects of gemfibrozil and other fibric acid derivatives on blood lipids and lipoproteins. J Clin Pharmacol 1991, 31:25-37. 55. Bang KH, Kim YK, Min BS, Na MK, Rhee YH, Lee JP, Bae KH: Antifungal activity of magnolol and honokiol. Arch Pharm Res 2000, 23:46-49. 56. Ho KY, Tsai CC, Chen CP, Huang JS, Lin CC: Antimicrobial activity of honokiol and magnolol isolated from Magnolia officinalis. Phytotherapy Research 2001, 15:139-141. 57. Lo YC, Teng CM, Chen CF, Chen CC, Hong CY: Magnolol and honokiol isolated from Magnolia officinalis protect rat heart mitochondria against lipid peroxidation. Biochemical Pharmacology 1994, 47:549-553. 58. Sohn EJ, Kim C-S, Kim YS, Jung DH, Jang DS, Lee YM, Kim JS: Effects of magnolol (5,5'-diallyl-2,2'-dihydroxybiphenyl) on diabetic nephropathy in type 2 diabetic Goto-Kakizaki rats. Life Sciences 2007, 80:468-475. 59. Choi S-S, Cha B-Y, Lee Y-S, Yonezawa T, Teruya T, Nagai K, Woo J-T: Magnolol enhances adipocyte differentiation and glucose uptake in 3T3-L1 cells. Life Sciences 2009, 84:908-914. 60. Zhang H, Xu X, Chen L, Chen J, Hu L, Jiang H, Shen X: Molecular Determinants of Magnolol Targeting Both RXRα and PPARγ. PLoS One 2011, 6:e28253. 61. Rayalam S, Yang JY, Ambati S, Della-Fera MA, Baile CA: Resveratrol induces apoptosis and inhibits adipogenesis in 3T3-L1 adipocytes. Phytotherapy Research 2008, 22:1367-1371. 62. Tan L, Yu J-T, Guan H-S: Resveratrol exerts pharmacological preconditioning by activating PGC-1[alpha]. Medical Hypotheses 2008, 71:664-667. 63. Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Lopez-Lluch G, Lewis K, et al: Resveratrol improves health and survival of mice on a high-calorie diet. Nature 2006, 444:337-342. 64. Jiang WJ: Sirtuins: novel targets for metabolic disease in drug development. Biochem Biophys Res Commun 2008, 373:341-344. 65. Ramadori G, Gautron L, Fujikawa T, Vianna CR, Elmquist JK, Coppari R: Central administration of resveratrol improves diet-induced diabetes. Endocrinology 2009, 150:5326-5333. 66. Mulvihill EE, Assini JM, Sutherland BG, DiMattia AS, Khami M, Koppes JB, Sawyez CG, Whitman SC, Huff MW: Naringenin decreases progression of atherosclerosis by improving dyslipidemia in high-fat-fed low-density lipoprotein receptor-null mice. Arterioscler Thromb Vasc Biol 2010, 30:742-748. 67. Cho KW, Kim YO, Andrade JE, Burgess JR, Kim Y-C: Dietary naringenin increases hepatic peroxisome proliferators–activated receptor α protein expression and decreases plasma triglyceride and adiposity in rats. European Journal of Nutrition 2010, 50:81-88. 68. Goldwasser J, Cohen PY, Yang E, Balaguer P, Yarmush ML, Nahmias Y: Transcriptional regulation of human and rat hepatic lipid metabolism by the grapefruit flavonoid naringenin: role of PPARalpha, PPARgamma and LXRalpha. PLoS One 2010, 5:e12399. 69. Kehrer JP, Biswal SS, La E, Thuillier P, Datta K, Fischer SM, Heuvel JPV: Inhibition of peroxisome-proliferator-activated receptor (PPAR)alpha by MK886. Biochemical Journal 2001, 356:899-906. 70. Tietz textbook of clinical chemistry. 1999, Third edition:850-851. 71. Fruchart-Najib J, Bauge E, Niculescu LS, Pham T, Thomas B, Rommens C, Majd Z, Brewer B, Pennacchio LA, Fruchart JC: Mechanism of triglyceride lowering in mice expressing human apolipoprotein A5. Biochem Biophys Res Commun 2004, 319:397-404. 72. Mulvihill EE, Allister EM, Sutherland BG, Telford DE, Sawyez CG, Edwards JY, Markle JM, Hegele RA, Huff MW: Naringenin prevents dyslipidemia, apolipoprotein B overproduction, and hyperinsulinemia in LDL receptor-null mice with diet-induced insulin resistance. Diabetes 2009, 58:2198-2210. 73. Fielding CJ, Shore VG, Fielding PE: A protein cofactor of lecithin:cholesterol acyltransferase. Biochem Biophys Res Commun 1972, 46:1493-1498. 74. Shachter NS: Apolipoproteins C-I and C-III as important modulators of lipoprotein metabolism. Curr Opin Lipidol 2001, 12:297-304. 75. Cox DW, Breckenridge WC, Little JA: Inheritance of apolipoprotein C-II deficiency with hypertriglyceridemia and pancreatitis. N Engl J Med 1978, 299:1421-1424. 76. Mahley RW, Innerarity TL, Rall SC, Jr., Weisgraber KH: Plasma lipoproteins: apolipoprotein structure and function. Journal of Lipid Research 1984, 25:1277-1294. 77. Zhang SH, Reddick RL, Piedrahita JA, Maeda N: Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science 1992, 258:468-471. 78. Duverger N, Tremp G, Caillaud JM, Emmanuel F, Castro G, Fruchart JC, Steinmetz A, Denefle P: Protection against atherogenesis in mice mediated by human apolipoprotein A-IV. Science 1996, 273:966-968. 79. Bruns GA, Karathanasis SK, Breslow JL: Human apolipoprotein A-I--C-III gene complex is located on chromosome 11. Arteriosclerosis 1984, 4:97-102. 80. Pennacchio LA, Olivier M, Hubacek JA, Cohen JC, Cox DR, Fruchart JC, Krauss RM, Rubin EM: An apolipoprotein influencing triglycerides in humans and mice revealed by comparative sequencing. Science 2001, 294:169-173. 81. Alborn WE, Johnson MG, Prince MJ, Konrad RJ: Definitive N-terminal protein sequence and further characterization of the novel apolipoprotein A5 in human serum. Clin Chem 2006, 52:514-517. 82. van der Vliet HN, Sammels MG, Leegwater AC, Levels JH, Reitsma PH, Boers W, Chamuleau RA: Apolipoprotein A-V: a novel apolipoprotein associated with an early phase of liver regeneration. J Biol Chem 2001, 276:44512-44520. 83. Weinberg RB, Cook VR, Beckstead JA, Martin DD, Gallagher JW, Shelness GS, Ryan RO: Structure and interfacial properties of human apolipoprotein A-V. J Biol Chem 2003, 278:34438-34444. 84. Beckstead JA, Wong K, Gupta V, Wan CP, Cook VR, Weinberg RB, Weers PM, Ryan RO: The C terminus of apolipoprotein A-V modulates lipid-binding activity. J Biol Chem 2007, 282:15484-15489. 85. Pennacchio LA, Rubin EM: Apolipoprotein A5, a newly identified gene that affects plasma triglyceride levels in humans and mice. Arterioscler Thromb Vasc Biol 2003, 23:529-534. 86. O'Brien PJ, Alborn WE, Sloan JH, Ulmer M, Boodhoo A, Knierman MD, Schultze AE, Konrad RJ: The novel apolipoprotein A5 is present in human serum, is associated with VLDL, HDL, and chylomicrons, and circulates at very low concentrations compared with other apolipoproteins. Clin Chem 2005, 51:351-359. 87. Ishihara M, Kujiraoka T, Iwasaki T, Nagano M, Takano M, Ishii J, Tsuji M, Ide H, Miller IP, Miller NE, Hattori H: A sandwich enzyme-linked immunosorbent assay for human plasma apolipoprotein A-V concentration. Journal of Lipid Research 2005, 46:2015-2022. 88. Schaap FG, Rensen PC, Voshol PJ, Vrins C, van der Vliet HN, Chamuleau RA, Havekes LM, Groen AK, van Dijk KW: ApoAV reduces plasma triglycerides by inhibiting very low density lipoprotein-triglyceride (VLDL-TG) production and stimulating lipoprotein lipase-mediated VLDL-TG hydrolysis. J Biol Chem 2004, 279:27941-27947. 89. Schaap F VP, Rensen P, Van der Vliet H, Chamuleau R, Maeda N, Havekes L, Groen A, Willems van Dijk K: Apolipoprotein AV expression ameliorates type III hyperlipidemia in mouse models by stimulating lipoprotein lipase-mediated VLDL-triglyceride hydrolysis. Circulation 2003:108-257. 90. Grosskopf I, Baroukh N, Lee SJ, Kamari Y, Harats D, Rubin EM, Pennacchio LA, Cooper AD: Apolipoprotein A-V deficiency results in marked hypertriglyceridemia attributable to decreased lipolysis of triglyceride-rich lipoproteins and removal of their remnants. Arterioscler Thromb Vasc Biol 2005, 25:2573-2579. 91. Merkel M, Loeffler B, Kluger M, Fabig N, Geppert G, Pennacchio LA, Laatsch A, Heeren J: Apolipoprotein AV accelerates plasma hydrolysis of triglyceride-rich lipoproteins by interaction with proteoglycan-bound lipoprotein lipase. J Biol Chem 2005, 280:21553-21560. 92. Lookene A, Beckstead JA, Nilsson S, Olivecrona G, Ryan RO: Apolipoprotein A-V-heparin interactions - Implications for plasma lipoprotein metabolism. Journal of Biological Chemistry 2005, 280:25383-25387. 93. Nilsson SK, Lookene A, Beckstead JA, Gliemann J, Ryan RO, Olivecrona G: Apolipoprotein A-V interaction with members of the low density lipoprotein receptor gene family. Biochemistry 2007, 46:3896-3904. 94. Pennacchio LA, Olivier M, Hubacek JA, Krauss RM, Rubin EM, Cohen JC: Two independent apolipoprotein A5 haplotypes influence human plasma triglyceride levels. Hum Mol Genet 2002, 11:3031-3038. 95. Ribalta J, Figuera L, Fernandez-Ballart J, Vilella E, Castro Cabezas M, Masana L, Joven J: Newly identified apolipoprotein AV gene predisposes to high plasma triglycerides in familial combined hyperlipidemia. Clin Chem 2002, 48:1597-1600. 96. Talmud PJ, Hawe E, Martin S, Olivier M, Miller GJ, Rubin EM, Pennacchio LA, Humphries SE: Relative contribution of variation within the APOC3/A4/A5 gene cluster in determining plasma triglycerides. Hum Mol Genet 2002, 11:3039-3046. 97. Endo K, Yanagi H, Araki J, Hirano C, Yamakawa-Kobayashi K, Tomura S: Association found between the promoter region polymorphism in the apolipoprotein A-V gene and the serum triglyceride level in Japanese schoolchildren. Hum Genet 2002, 111:570-572. 98. Aouizerat BE, Kulkarni M, Heilbron D, Drown D, Raskin S, Pullinger CR, Malloy MJ, Kane JP: Genetic analysis of a polymorphism in the human apoA-V gene: effect on plasma lipids. Journal of Lipid Research 2003, 44:1167-1173. 99. Talmud PJ, Palmen J, Putt W, Lins L, Humphries SE: Determination of the functionality of common APOA5 polymorphisms. J Biol Chem 2005, 280:28215-28220. 100. Kao JT, Wen HC, Chien KL, Hsu HC, Lin SW: A novel genetic variant in the apolipoprotein A5 gene is associated with hypertriglyceridemia. Hum Mol Genet 2003, 12:2533-2539. 101. Priore Oliva C, Pisciotta L, Li Volti G, Sambataro MP, Cantafora A, Bellocchio A, Catapano A, Tarugi P, Bertolini S, Calandra S: Inherited apolipoprotein A-V deficiency in severe hypertriglyceridemia. Arterioscler Thromb Vasc Biol 2005, 25:411-417. 102. Marcais C, Verges B, Charriere S, Pruneta V, Merlin M, Billon S, Perrot L, Drai J, Sassolas A, Pennacchio LA, et al: Apoa5 Q139X truncation predisposes to late-onset hyperchylomicronemia due to lipoprotein lipase impairment. J Clin Invest 2005, 115:2862-2869. 103. Huang YJ, Lin YL, Chiang CI, Yen CT, Lin SW, Kao JT: Functional importance of apolipoprotein A5 185G in the activation of lipoprotein lipase. Clinica Chimica Acta 2012, 413:246-250. 104. Liu P, Jenkins NA, Copeland NG: A Highly Efficient Recombineering-Based Method for Generating Conditional Knockout Mutations. Genome Research 2003, 13:476-484. 105. King AJ, Segreti JA, Larson KJ, Souers AJ, Kym PR, Reilly RM, Collins CA, Voorbach MJ, Zhao G, Mittelstadt SW, Cox BF: In vivo efficacy of acyl CoA: diacylglycerol acyltransferase (DGAT) 1 inhibition in rodent models of postprandial hyperlipidemia. Eur J Pharmacol 2010, 637:155-161. 106. Muroyama A, Fujita A, Lv C, Kobayashi S, Fukuyama Y, Mitsumoto Y: Magnolol Protects against MPTP/MPP(+)-Induced Toxicity via Inhibition of Oxidative Stress in In Vivo and In Vitro Models of Parkinson's Disease. Parkinsons Dis 2012, 2012:985157. 107. Ji Z-S, Dichek HL, Miranda RD, Mahley RW: Heparan Sulfate Proteoglycans Participate in Hepatic Lipaseand Apolipoprotein E-mediated Binding and Uptake of Plasma Lipoproteins, Including High Density Lipoproteins. Journal of Biological Chemistry 1997, 272:31285-31292. 108. Kirchgessner TG, Chuat JC, Heinzmann C, Etienne J, Guilhot S, Svenson K, Ameis D, Pilon C, d'Auriol L, Andalibi A, et al.: Organization of the human lipoprotein lipase gene and evolution of the lipase gene family. Proc Natl Acad Sci U S A 1989, 86:9647-9651. 109. Faustinella F, Chang A, Van Biervliet JP, Rosseneu M, Vinaimont N, Smith LC, Chen SH, Chan L: Catalytic triad residue mutation (Asp156----Gly) causing familial lipoprotein lipase deficiency. Co-inheritance with a nonsense mutation (Ser447----Ter) in a Turkish family. J Biol Chem 1991, 266:14418-14424. 110. Emmerich J, Beg OU, Peterson J, Previato L, Brunzell JD, Brewer HB, Jr., Santamarina-Fojo S: Human lipoprotein lipase. Analysis of the catalytic triad by site-directed mutagenesis of Ser-132, Asp-156, and His-241. J Biol Chem 1992, 267:4161-4165. 111. Faustinella F, Smith LC, Chan L: Functional topology of a surface loop shielding the catalytic center in lipoprotein lipase. Biochemistry 1992, 31:7219-7223. 112. van Tilbeurgh H, Roussel A, Lalouel JM, Cambillau C: Lipoprotein lipase. Molecular model based on the pancreatic lipase x-ray structure: consequences for heparin binding and catalysis. J Biol Chem 1994, 269:4626-4633. 113. Winkler FK, D'Arcy A, Hunziker W: Structure of human pancreatic lipase. Nature 1990, 343:771-774. 114. Hide WA, Chan L, Li WH: Structure and evolution of the lipase superfamily. Journal of Lipid Research 1992, 33:167-178. 115. Dugi KA, Dichek HL, Talley GD, Brewer HB, Jr., Santamarina-Fojo S: Human lipoprotein lipase: the loop covering the catalytic site is essential for interaction with lipid substrates. J Biol Chem 1992, 267:25086-25091. 116. Tashiro J, Kobayashi J, Shirai K, Saito Y, Nakamura H, Morimoto Y, Yoshida S: Trypsin treatment may impair the interfacial activation action of lipoprotein lipase. J Biochem (Tokyo) 1992, 111:509-514. 117. Henderson HE, Ma Y, Liu MS, Clark-Lewis I, Maeder DL, Kastelein JJ, Brunzell JD, Hayden MR: Structure-function relationships of lipoprotein lipase: mutation analysis and mutagenesis of the loop region. Journal of Lipid Research 1993, 34:1593-1602. 118. Yang CY, Gu ZW, Yang HX, Rohde MF, Gotto AM, Jr., Pownall HJ: Structure of bovine milk lipoprotein lipase. J Biol Chem 1989, 264:16822-16827. 119. Davis RC, Wong H, Nikazy J, Wang K, Han Q, Schotz MC: Chimeras of hepatic lipase and lipoprotein lipase. Domain localization of enzyme-specific properties. J Biol Chem 1992, 267:21499-21504. 120. Dichek HL, Parrott C, Ronan R, Brunzell JD, Brewer HB, Jr., Santamarina-Fojo S: Functional characterization of a chimeric lipase genetically engineered from human lipoprotein lipase and human hepatic lipase. Journal of Lipid Research 1993, 34:1393-1340. 121. Berryman DE, Bensadoun A: Site-directed mutagenesis of a putative heparin binding domain of avian lipoprotein lipase. J Biol Chem 1993, 268:3272-3276. 122. Hata A, Ridinger DN, Sutherland S, Emi M, Shuhua Z, Myers RL, Ren K, Cheng T, Inoue I, Wilson DE, et al.: Binding of lipoprotein lipase to heparin. Identification of five critical residues in two distinct segments of the amino-terminal domain. J Biol Chem 1993, 268:8447-8457. 123. Ma Y, Henderson HE, Liu MS, Zhang H, Forsythe IJ, Clarke-Lewis I, Hayden MR, Brunzell JD: Mutagenesis in four candidate heparin binding regions (residues 279-282, 291-304, 390-393, and 439-448) and identification of residues affecting heparin binding of human lipoprotein lipase. Journal of Lipid Research 1994, 35:2049-2059. 124. Semenkovich CF, Luo CC, Nakanishi MK, Chen SH, Smith LC, Chan L: In vitro expression and site-specific mutagenesis of the cloned human lipoprotein lipase gene. Potential N-linked glycosylation site asparagine 43 is important for both enzyme activity and secretion. J Biol Chem 1990, 265:5429-5433. 125. Ben-Zeev O, Stahnke G, Liu G, Davis RC, Doolittle MH: Lipoprotein lipase and hepatic lipase: the role of asparagine-linked glycosylation in the expression of a functional enzyme. Journal of Lipid Research 1994, 35:1511-1523. 126. Busca R, Pujana MA, Pognonec P, Auwerx J, Deeb SS, Reina M, Vilaro S: Absence of N-glycosylation at asparagine 43 in human lipoprotein lipase induces its accumulation in the rough endoplasmic reticulum and alters this cellular compartment. Journal of Lipid Research 1995, 36:939-951. 127. Wong H, Davis RC, Nikazy J, Seebart KE, Schotz MC: Domain exchange: characterization of a chimeric lipase of hepatic lipase and lipoprotein lipase. Proc Natl Acad Sci U S A 1991, 88:11290-11294. 128. Lookene A, Bengtsson-Olivecrona G: Chymotryptic cleavage of lipoprotein lipase. Identification of cleavage sites and functional studies of the truncated molecule. Eur J Biochem 1993, 213:185-194. 129. Williams KJ, Fless GM, Petrie KA, Snyder ML, Brocia RW, Swenson TL: Mechanisms by which lipoprotein lipase alters cellular metabolism of lipoprotein(a), low density lipoprotein, and nascent lipoproteins. Roles for low density lipoprotein receptors and heparan sulfate proteoglycans. J Biol Chem 1992, 267:13284-13292. 130. Al-Haideri M, Granot E, Schwiegelshoh B, Vogel T, Gorecki M, Goldberg IJ, Deckelbaum RJ: Apoprotein E simulates non receptor triglyceride-rich particle cellular uptake. Circulation 1993, 88:1-321. 131. Nykjaer A, Bengtsson-Olivecrona G, Lookene A, Moestrup SK, Petersen CM, Weber W, Beisiegel U, Gliemann J: The alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein binds lipoprotein lipase and beta-migrating very low density lipoprotein associated with the lipase. J Biol Chem 1993, 268:15048-15055. 132. Zhang H, Krapp A, Ma Y, Ginzinger D, Beisiegel U, Hayden MR: In vitro mutagenesis studies defining residues of lipoprotein lipase critical for mediation of the binding of lipoproteins to the LDL receptor-related protein (LRP). Atherosclerosis 1994, 109:66. 133. Bruin T, Appelman EE, Blanchard H, Groat NR, Knstelein JJP, Derewenda ZS: The role of proline residues in the structure and function of lipoprotein lipase. . Atherosclerosis (1994a), 109:63. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65690 | - |
| dc.description.abstract | 第一部分
當血液中三酸甘油脂或膽固醇任何一種或二種在血中之濃度上升時,稱為高脂血症。高脂血症可能會併發動脈硬化、冠心症或腦中風等疾病。脂蛋白解脂酶(lipoprotein lipase, LPL)由血液中脂蛋白元(apolipoprotein , APO) AV及脂蛋白元CII的活化,可以分解血液中乳麋微粒和極低密度脂蛋白所包含的三酸甘油脂,是分解脂肪的重要角色。身體的許多組織中皆會合成LPL,例如脂肪組織、心臟組織、肺臟及腎臟等。當LPL製造後會組成一個二聚體才有活性,之後LPL會穿越內皮細胞到達血管內,由HSPGs及GPIHBP1所呈現。 Peroxisome proliferator-activated receptors(PPARs)是一種核受體,當有配體(ligand)與PPAR結合後,PPAR隨之活化會與retinoid X receptor形成異型二聚體,此二聚體可以結合至DNA上的特定序列peroxisome proliferators response element (PPRE),啟動下游基因的轉錄。而LPL的起始子區域序列中也包含了PPRE。 先前的研究文獻指出magnolol(厚朴酚)可以作為PPARγ的配體,並且有利於脂肪組織的分化,並且會使得LPL的mRNA表現增加;resveratrol(白藜蘆醇)能刺激sirtuin的活性,而SIRT1可以調節動物體內葡萄糖和胰島素生成及脂肪代謝等;naringenin(柚皮素)可以降低肝臟產生膽固醇,增加脂肪酸氧化,也可以提高PPARγ及PPARα的活性。由於LPL主要表現在脂肪組織內,而脂肪組織內的PPAR以PPARγ為主要,我們測試了此三種天然化合物,magnolol、resveratrol及naringenin,期許此三種藥物可以做為PPRAγ的ligand,進而增加LPL的生成並增加活性,提供預防高脂血症的方向。 利用3T3-L1細胞測試不同濃度的magnolol、resveratrol及naringenin培養六天,第六天分別收集細胞培養液以及細胞溶解物,測試細胞內源性的LPL活性,結果顯示magnolol使LPL活性增加1.04~1.25倍;resveratrol使LPL活性增加1.26~2.72倍;naringenin 則使LPL活性上升1.23~1.67倍。 抽取給予化合物六天後的細胞總RNA,以qPCR定量LPL mRNA表現量,結果顯示magnolol使LPL mRNA增加1.3~1.63倍;naringenin使LPL mRNA增加1.35倍;給予resveratrol 與對照組相較LPL mRNA的表現量並無顯著差異。 當同時加入PPARγ的抑制劑 GW9662或是GW9662及PPARα的抑制劑MK886後,magnolol所增加的LPL活性有被抑制下來,然而,LPL mRNA表現量卻沒有受抑制劑影響而下降。Naringenin在加入GW9662或是GW9662及MK886後也有相同情形,活性有些微抑制,但LPL mRNA表現量卻沒有受抑制劑影響而下降。 目前結果顯示magnolol、naringenin可以促進LPL表現以提高水解活性,resveratrol可以提高LPL活性卻不是透過LPL轉錄此路徑。LPL的活性提高的機制,需要再進一步證實。 第二部分 人體內的脂肪需要被包覆方能在血液中運送,而包覆脂肪的結構則稱為脂蛋白,其外層包含了單層磷脂質、膽固醇及脂蛋白元。脂蛋白元AV主要由肝臟產生,且存在於乳麋微粒、極低密度脂蛋白及高密度脂蛋白。文獻中發現血液中的三酸甘油脂濃度和APOA5的單一核甘酸多型性有關。本實驗室發現在APOA5第四個exon所發生的變異(c.553G>T多型性),會導致原本的甘胺酸(glycine)變異為半胱胺酸(cysteine),形成變異型脂蛋白元AV,此與高三酸甘油脂血症有關。 為了探討脂蛋白元AV對於血液循環中三酸甘油脂的影響,建構人類脂蛋白元A5野生型及變異型(G185C)之基因替換小鼠。利用高效率基因重組方法建構標的載體,進一步得到帶有人類脂蛋白元A5基因之嵌合鼠。將公嵌合鼠與野生型C57BL/6品系母小鼠進行交配,出生後之小鼠,取毛色混合者剪尾巴、萃取組織DNA,進行genotyping PCR,以篩選出基因替換之小鼠進行繁殖。 將基因穩定且12周齡的人類脂蛋白元A5變異型(c.553G>T)基因替換公小鼠犧牲後採血,比較apoa5野生型、小鼠及人類變異脂蛋白元A5雜合型及人類變異脂蛋白元A5同型小鼠間血漿內脂肪濃度的差異。 結果顯示人類變異脂蛋白元A5同型公小鼠與apoa5野生型公小鼠的三酸甘油脂相較有2倍以上提升,可見人類變異脂蛋白元AV對血液中三酸甘油脂的濃度有重要影響。然而,由於人類脂蛋白元A5野生型基因替換小鼠的基因尚為穩定,人類脂蛋白元A5變異型及野生型的差異還需要進一步探討。 初步以magnolol分別餵食apoa5野生型公小鼠、人類脂蛋白元A5 185C variant雜合型及人類脂蛋白元A5 185C variant同型公小鼠,發現apoa5野生型公小鼠餵食magnolol後可使TG下降;人類脂蛋白元A5 185C variant雜合型公小鼠餵食magnolol後TG也有下降;人類脂蛋白元A5 185C variant同型公小鼠餵食magnolol後TG下降不明顯。Magnolol是否能有效降低TG,需更進一步證實。 | zh_TW |
| dc.description.abstract | Part I
Hyperlipidemia is defined as having abnormally elevated levels of triglycerides or cholesterol or lipoproteins in the blood. Hyperlipidemia may be a risk factor of arteriosclerosis, coronary heart disease, stroke and other illnesses. When lipoprotein lipase (LPL) is activated by apolipoprotein AV (Apo AV) and Apo CII, it could catalyze the hydrolysis of triglycerides from chylomicrons and very low density lipoprotein (VLDL). LPL is synthesized in the parenchymal cells of tissues, such as adipose tissue, heart, lung and kidney, etc. Homodimer of LPL has enzyme activity, and is thus secreted and is translocated from the endothelial cells to the intravascular surface, and is finally presented by HSPGs and GHIBP1 on cell the memebrane. Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors. When the ligands bind to PPAR, it would become activated. Then PPARs would form heterodimer with retinoid X receptor (RXR), which could then bind to DNA sequence-specific peroxisome proliferator response element (PPRE), and promote the transcription of downstream genes. The PPRE is also present in the promoters of LPL genes. In previous research, magnolol was shown to be a PPARγ ligand. It can promote the differentiation of adipose tissue and increase LPL mRNA expression. Resveratrol could activate sirtuin, and SIRT1 could regulate the production of glucose and insulin, and regulate lipid metabolism in vivo, etc. Naringenin could reduce the production of cholesterol in hepatocytes, and increase β-oxidation. Naringenin is also a ligand for PPARγ and PPARα. LPL is mainly synthesized in the adipose tissue, where PPARγ is abundantly expressed. We hypothesized that, the three compounds, magnolol, resveratrol and naringenin, could be ligands of PPARγ, and increase LPL expression. 3T3-L1 cells were treated with magnolol, resveratrol or naringenin for six days. On the sixth day, the culture medium and cell lysates were collected respectively, and then tested for endogenous LPL activity. The results indicated that magnolol enhanced LPL activity 1.04 ~ 1.25 fold. Resveratrol enhanced LPL activity 1.40 ~ 2.22 fold Naringenin enhanced LPL activity 1.23 ~ 1.67 fold. Real-Time quantitative PCR was used to measure LPL mRNA expression. The results showed that magnolol enhanced LPL mRNA expression 1.3 ~ 1.63 fold. Naringenin enhanced LPL mRNA expression 1.35 fold. However, resveratrol did not significantly enhanced LPL mRNA expression. Addition of the PPARγ inhibitor, GW9662, or GW9662 and PPARα inhibitor, MK886, in the magnolol-treated cells, LPL activity was suppressed. However, LPL mRNA expression was not changed. In naringenin-treated cells, after addition of GW9662 or MK886, the LPL activity was slightly decreased, but LPL mRNA expression was not affected by inhibitors. The results indicated that magnolol and naringenin could promote LPL transcription and enhance the hydrolytic activity. Resveratrol could enhace LPL activity but did not promote LPL transcription. The mechanisms of theses compounds to enhance LPL activity need to be further investigated. Part II Lipid needs to be coated before being transported in the blood and the coated structure is called lipoproteins. The outer layer contains a monolayer of phospholipids, cholesterol and apolipoprotein. Apolipoprotein AV (APOAV) is mainly produced by liver and presents in chylomicron, VLDL and high density lipoprotein (HDL). The levels of triglycerides in blood are related to apoA5 single nucleotide polymorphisms (SNPs). Our laboratory reported that individuals carring a SNP of APOA5 (c.553G>T), a glycine change to cysteine have higher serum TG levels. To investigate the influence of human APOAV on the circulating triglycerides, the human APOA5 wild type and variant knockin mice were established.A highly efficient recombination-based method was performed to generate the targeting construct vectors, and to create the chimeras of human APOA5 wild type and variant (APOA5 c.553G>T) knockin mice. The male chimeras were mated with wildtype female C57BL/6 mice and the mice genotype was determined by PCR to select human APOA5 knockin mice for breeding. 12-week-old male human APOA5 variant (c.553G>T) knockin mice were sacrificed to collect their blood to compare lipid profiles among male C57BL/6 wildtype mice, the male human APOA5 variant heterozygous knockin mice and male human APOA5 variant homozygous knockin mice. The results showed that the triglyceride levels of human APOA5 variant knockin mice is 2-fold higher than those of wildtype mice. It indicates that human APOAV plays an important role in triglyceride metabolism. The differences between C57BL/6 wildtype and variant human APOA5 need to be confirmed after selection of male human APOA5 wildtype knockin mice. The plasma TG levels drcreased in male C57BL/6 wildtype mice after ingestion of magnolol. The same result was also observed in male 185C APOA5 heterozygous knockin mouse. However, the plasma TG concentration was not significantly decreased in male 185C APOA5 homozygous knockin mouse fed magnolol. Whether magnolol could reduce TG in plasma effectively needs to be further confirmed. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T23:59:18Z (GMT). No. of bitstreams: 1 ntu-101-R99424014-1.pdf: 4625867 bytes, checksum: 3afc36d9a59e15be3a7d663bb008c25d (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 總目次
總目次 I 圖目次 II 表目次 III 附錄目次 III 簡寫或縮寫表 IV 中文摘要 1 Abstract 4 第一部份 7 第一章 導論 8 第一節 前言 8 第二節 高三酸甘油脂血症(hypertriglyceridemia, HTG) 8 第三節 脂蛋白解脂酶(lipoprotein lipase, LPL)的發現 9 第四節 脂蛋白解脂酶的基因構造 9 第五節 脂蛋白解脂酶的基本特性 10 第六節 脂蛋白解脂酶的分泌機轉 11 第七節 細胞內的訊息傳遞 12 第八節 脂蛋白解脂酶的基因缺陷 13 第九節 脂蛋白解脂酶缺乏的臨床症狀 14 第十節 高脂血症的治療 14 第十一節 其他化合物特性 15 第十二節 研究動機 17 第二章 實驗材料與方法 19 第一節 儀器設備 19 第二節 試藥、試劑組與材料 20 第三章 實驗結果 26 第一節 藥物對細胞毒性的測試 26 第二節 化合物對細胞內源性脂蛋白解脂酶的活性影響 27 第三節 化合物對脂蛋白解脂酶基因表現的影響 29 第四節 藥物對細胞內脂蛋白解脂酶影響的路徑探討 30 第四章 討論 32 第二部分 35 第一章 導論 36 第一節 脂蛋白元(apolipoprotein) 36 第二節 脂蛋白元AV的發現(apolipoprotein AV,apoAV) 36 第三節 脂蛋白元AV的構造 37 第四節 脂蛋白元AV的基本特性 37 第五節 脂蛋白元AV的功能 38 第六節 脂蛋白元AV的多型性 39 第七節 研究動機 40 第二章 實驗材料與方法 42 第一節 儀器設備 42 第二節 試藥、試劑組與材料 42 第三節 實驗方法 43 第三章 實驗結果 45 第一節 基因型鑑定 45 第二節 鼠隻解剖採血 45 第三節 鼠隻餵食天然化合物 46 第四章 討論 48 參考文獻 92 圖目次 圖 1:化合物對3T3-L1細胞存活度影響 51 圖 2:抑制劑對3T3-L1細胞存活度影響 52 圖 3:以Manolol作用在3T3-L1細胞溶解物(cell lysates)以及細胞培養液(medium)中脂蛋白解脂酶活性的比較 53 圖 4:以Resveratrol作用後在細胞溶解物(cell lysates)以及細胞培養液(medium)中脂蛋白解脂酶活性的比較 54 圖 5:以Naringenin作用後在3T3-L1細胞溶解物(cell lysates)以及細胞培養液(medium)中脂蛋白解脂酶活性的比較 55 圖6:以Magnolol作用後觀察3T3-L1細胞中LPL基因表現 56 圖7:以Resveratrol作用後觀察3T3-L1細胞中LPL基因表現 57 圖8:以Naringenin作用後觀察3T3-L1細胞中LPL基因表現 58 圖9:以Magnolol及抑制劑作用後在3T3-L1細胞溶解物中脂蛋白解脂酶活性的比較 59 圖10:以Magnolol及抑制劑作用後在3T3-L1培養液中脂蛋白解脂酶活性的比較 60 圖11:以Magnolol及抑制劑作用後觀察3T3-L1細胞中LPL基因表現 61 圖12:以Naringenin及抑制劑作用後在3T3-L1細胞溶解物中脂蛋白解脂酶活性的比較 62 圖13:以Naringenin及抑制劑作用後在3T3-L1培養液中脂蛋白解脂酶活性的比較 63 圖14:以Naringenin及抑制劑作用後觀察3T3-L1細胞中LPL基因表現 64 圖 15:小鼠基因型鑑定 65 圖16:人類185C APOA5基因替換小鼠之脂肪濃度比較 66 圖 17:C57BL/6野生型小鼠餵食magnolol之脂肪濃度比較 67 圖 18:人類APOA5 185C雜合型(heterozygous)小鼠餵食magnolol之脂肪濃度比較 68 圖 19:人類APOA5 185C同型(homozygous)小鼠餵食magnolol之脂肪濃度比較 69 表目次 表一:人類脂蛋白解脂酶的組成 70 表二:人類脂蛋白解脂酶之功能與結構 71 表三:實驗中所需之寡核酸引子序列 72 表四:天然物細胞實驗結果統整 73 表五:人類185 C APOA5基因替換小鼠之各項生化檢查指數 73 表六:C57BL/6野生型小鼠餵食天然化合物之各項生化檢查指數 74 表七:人類185C APOA5雜合型小鼠餵食天然化合物之各項生化檢查指數 74 表八:人類185C APOA5同型小鼠餵食天然化合物之各項生化檢查指數 75 附錄目次 附錄一:世界衛生組織對高脂血症的分類 76 附錄二:降血脂藥物機轉 76 附錄三:實驗流程 76 附錄 四:建構目標載體 84 附錄 五:人類脂蛋白元A5基因替換小鼠 90 | |
| dc.language.iso | zh-TW | |
| dc.subject | 厚朴酚 | zh_TW |
| dc.subject | 高三酸甘油脂血症 | zh_TW |
| dc.subject | 脂蛋白元AV | zh_TW |
| dc.subject | 脂蛋白解脂酶 | zh_TW |
| dc.subject | 單一核甘酸多型性 | zh_TW |
| dc.subject | 柚皮素 | zh_TW |
| dc.subject | 白藜蘆醇 | zh_TW |
| dc.subject | single nucleotide polymorphisms (SNPs) | en |
| dc.subject | Hyperlipoproteinemia | en |
| dc.subject | Magnolol | en |
| dc.subject | Resveratrol | en |
| dc.subject | Naringenin | en |
| dc.subject | Apolipoprotein AV | en |
| dc.subject | Lipoprotein lipase | en |
| dc.title | 天然化合物對脂蛋白解脂酶活性之影響及人類脂蛋白元A5基因替換小鼠之特性 | zh_TW |
| dc.title | Effects of Nature Compounds on Lipoprotein Lipase Activity and Characteristics of Apolipoprotein A5 Knockin Mice | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林淑華(Shu-Wha Lin),江福田,謝絹珠(June Hsieh Wu) | |
| dc.subject.keyword | 脂蛋白解脂酶,高三酸甘油脂血症,厚朴酚,白藜蘆醇,柚皮素,脂蛋白元AV,單一核甘酸多型性, | zh_TW |
| dc.subject.keyword | Lipoprotein lipase,Hyperlipoproteinemia,Magnolol,Resveratrol,Naringenin,Apolipoprotein AV,single nucleotide polymorphisms (SNPs), | en |
| dc.relation.page | 103 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-07-17 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
| 顯示於系所單位: | 醫學檢驗暨生物技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 4.52 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
