Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65689
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor邱奕鵬(Yih-Peng Chiou)
dc.contributor.authorCong-Min Fangen
dc.contributor.author方琮閔zh_TW
dc.date.accessioned2021-06-16T23:59:14Z-
dc.date.available2012-07-27
dc.date.copyright2012-07-27
dc.date.issued2012
dc.date.submitted2012-07-17
dc.identifier.citation[1] N. Holonyak, “Is the light emitting diode (LED) an ultimate lamp?,” American Journal of Physics, vol. 68, pp. 864-866, Sep. 2000.
[2] D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 8, pp. 310-320, Mar./Apr. 2002.
[3] Y. Narukawa, M. Sano, M. Ichikawa, S. Minato, T. Sakamot, T. Yamada, and T. Mukai, “Improvement of luminous efficiency in white light emitting diodes by reducing a forward-bias voltage,” Japanese Journal of Applied Physics Part 2-Letters & Express Letters, vol. 46, pp. 963-965, Oct. 2007.
[4] M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” Journal of Display Technology, vol. 3, pp. 160-175, Jun. 2007
[5] Y. Kawakami, Y. Narukawa, K. Omae, S. Fujita, and S. Nakamura, “Dimensionality of excitons in InGaN-based light emitting devices,” Physica Status Solidi a-Applied Research, vol. 178, pp. 331-336, Mar. 2000.
[6] O. B. Shchekin, J. E. Epler, T. A. Trottier, T. Margalith, D. A. Steigerwald, M. O. Holcomb, P. S. Martin, and M. R. Krames, “High performance thin-film flip-chip InGaN-GaN light-emitting diodes,” Applied Physics Letters, vol. 89, pp. 071109, Aug. 2006.
[7] N. F. Gardner, G. O. Mueller, Y. C. Shen, G. Chen, S. Watanabe, W. Gotz, and M. R. Krames, “Blue-emitting InGaN-GaN double-heterostructure light-emitting diodes reaching maximum quantum efficiency above 200 A/cm(2),” Applied Physics Letters, vol. 91, pp. 243506, Dec. 2007.
[8] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Applied Physics Letters, vol. 84, pp. 855-857, Feb. 2004.
[9] C. C. Yang, C. F. Lin, C. M. Lin, C. C. Chang, K. T. Chen, J. F. Chien, and C. Y. Chang, “Improving light output power of InGaN-based light emitting diodes with pattern-nanoporous p-type GaN:Mg surfaces,” Applied Physics Letters, vol. 93, pp. 203103, Nov. 2008.
[10] C. H. Chiu, P. Yu, C. H. Chang, C. S. Yang, M. H. Hsu, H. C. Kuo, and M. A. Tsai, “Oblique electron-beam evaporation of distinctive indium-tin-oxide nanorods for enhanced light extraction from InGaN/GaN light emitting diodes,” Optics Express, vol. 17, pp. 21250-21256, Nov. 2009.
[11] C.-C. Lin and C.-T. Lee, “Enhanced light extraction mechanism of GaN-based light-emitting diodes using top surface and side-wall nanorod arrays,” IEEE Photonics Technology Letters, vol. 22, pp. 1132-1134, Aug. 2010.
[12] H. K. Lee, M. S. Kim, and J. S. Yu, “Light-extraction enhancement of large-area GaN-based LEDs with electrochemically grown ZnO nanorod arrays,” IEEE Photonics Technology Letters, vol. 23, pp. 1204-1206, Sep. 2011.
[13] S. H. Fan, P. R. Villeneuve, J. D. Joannopoulos, and E. F. Schubert, “High extraction efficiency of spontaneous emission from slabs of photonic crystals,” Physical Review Letters, vol. 78, pp. 3294-3297, Apr. 1997.
[14] M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science, vol. 308, pp. 1296-1298, May 2005.
[15] S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nature Photonics, vol. 1, pp. 449-458, Aug. 2007.
[16] J. J. Wierer, M. R. Krames, J. E. Epler, N. F. Gardner, M. G. Craford, J. R. Wendt, J. A. Simmons, and M. M. Sigalas, “InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures,” Applied Physics Letters, vol. 84, pp. 3885-3887, May 2004.
[17] J. J. Wierer, Jr., A. David, and M. M. Megens, “III-nitride photonic-crystal light-emitting diodes with high extraction efficiency,” Nature Photonics, vol. 3, pp. 163-169, Mar. 2009.
[18] C.-F. Lai, C.-H. Chao, H.-C. Kuo, H.-H. Yen, C.-E. Lee, and W.-Y. Yeh, “Directional light extraction enhancement from GaN-based film-transferred photonic crystal light-emitting diodes,” Applied Physics Letters, vol. 94, pp. 123106, Mar. 2009.
[19] A. David, T. Fujii, R. Sharma, K. McGroddy, S. Nakamura, S. P. DenBaars, E. L. Hu, C. Weisbuch, and H. Benisty, “Photonic-crystal GaN light-emitting diodes with tailored guided modes distribution,” Applied Physics Letters, vol. 88, pp. 061124, Feb. 2006.
[20] A. David, B. Moran, K. McGroddy, E. Matioli, E. L. Hu, S. P. DenBaars, S. Nakamura, and C. Weisbuchb, “GaN/InGaN light emitting diodes with embedded photonic crystal obtained by lateral epitaxial overgrowth,” Applied Physics Letters, vol. 92, pp. 113514, Mar. 2008.
[21] E. Matioli, M. Iza, Y.-S. Choi, F. Wu, S. Keller, H. Masui, E. Hu, J. Speck, and C. Weisbuch, “GaN-based embedded 2D photonic crystal LEDs: Numerical optimization and device characterization,” Physica Status Solidi C: Current Topics in Solid State Physics, vol. 6, pp. 675-679, Feb. 2009.
[22] E. Matioli, E. Rangel, M. Iza, B. Fleury, N. Pfaff, J. Speck, E. Hu, and C. Weisbuch, “High extraction efficiency light-emitting diodes based on embedded air-gap photonic-crystals,” Applied Physics Letters, vol. 96, pp. 031108, Jan. 2010.
[23] S. Noda and M. Fujita, “Photonic crystal efficiency boost,” Nature Photonics, vol. 3, pp. 129-130, Mar. 2009.
[24] A. David, H. Benisty, and C. Weisbuch, “Optimization of light-diffracting photonic-crystals for high extraction efficiency LEDs,” Journal of Display Technology, vol. 3, pp. 133-148, Jan. 2007.
[25] H.-Y. Ryu and J.-I. Shim, “Structural parameter dependence of light extraction efficiency in photonic crystal InGaN vertical light-emitting diode structures,” IEEE Journal of Quantum Electronics, vol. 46, pp. 714-720, May 2010.
[26] C.-F. Lai, H.-C. Kuo, C.-H. Chao, P. Yu, and W.-Y. Yeh, “Structural effects on highly directional far-field emission patterns of GaN-based micro-cavity light-emitting diodes with photonic crystals,” Journal of Lightwave Technology, vol. 28, pp. 2881-2889, Oct. 2010.
[27] M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” Journal of the Optical Society of America a-Optics Image Science and Vision, vol. 12, pp. 1068-1076, May 1995.
[28] M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” Journal of the Optical Society of America a-Optics Image Science and Vision, vol. 12, pp. 1077-1086, May 1995.
[29] P. Lalanne, “Improved formulation of the coupled-wave method for two-dimensional gratings,” Journal of the Optical Society of America a-Optics Image Science and Vision, vol. 14, pp. 1592-1598, Jul. 1997.
[30] D. Delbeke, P. Bienstman, R. Bockstaele, and R. Baets, “Rigorous electromagnetic analysis of dipole emission in periodically corrugated layers: the grating-assisted resonant-cavity light-emitting diode,” Journal of the Optical Society of America a-Optics Image Science and Vision, vol. 19, pp. 871-880, May 2002.
[31] W. S. Wong, T. Sands, N. W. Cheung, M. Kneissl, D. P. Bour, P. Mei, L. T. Romano, and N. M. Johnson, “Fabrication of thin-film InGaN light-emitting diode membranes by laser lift-off,” Applied Physics Letters, vol. 75, pp. 1360-1362, Sep. 1999.
[32] J. J. Wierer, D. A. Steigerwald, M. R. Krames, J. J. O'Shea, M. J. Ludowise, G. Christenson, Y. C. Shen, C. Lowery, P. S. Martin, S. Subramanya, W. Gotz, N. F. Gardner, R. S. Kern, and S. A. Stockman, “High-power AlGaInN flip-chip light-emitting diodes,” Applied Physics Letters, vol. 78, pp. 3379-3381, May 2001.
[33] O. B. Shchekin, J. E. Epler, T. A. Trottier, T. Margalith, D. A. Steigerwald, M. O. Holcomb, P. S. Martin, and M. R. Krames, “High performance thin-film flip-chip InGaN-GaN light-emitting diodes,” Applied Physics Letters, vol. 89, pp. 071109, Aug. 2006.
[34] H. Kim, K.-K. Kim, K.-K. Choi, H. Kim, J.-O. Song, J. Cho, K. H. Baik, C. Sone, Y. Park, and T.-Y. Seong, “Design of high-efficiency GaN-based light emitting diodes with vertical injection geometry,” Applied Physics Letters, vol. 91, pp. 023510, Jul. 2007.
[35] U. Zehnder, B. Hahn, J. Baur, M. Peter, S. Bader, H. J. Lugauer, and A. Weimar, “GaInN LEDs - Straight way for solid state lighting,” Manufacturing Leds for Lighting and Displays, vol. 6797, pp. 7970, Sep. 2007.
[36] G. Chen, M. Craven, A. Kim, A. Munkholm, S. Watanabe, M. Camras, W. Goetz, and F. Steranka, “Performance of high-power III-nitride light emitting diodes,” Physica Status Solidi a-Applications and Materials Science, vol. 205, pp. 1086-1092, May 2008.
[37] H. Benisty, H. De Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction - Part I: Basic concepts and analytical trends,” IEEE Journal of Quantum Electronics, vol. 34, pp. 1612-1631, Sep. 1998.
[38] H. Benisty, H. De Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction - Part II: Selected exact simulations and role of photon recycling,” IEEE Journal of Quantum Electronics, vol. 34, pp. 1632-1643, Sep. 1998.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65689-
dc.description.abstract在本篇論文中,我們利用嚴格電磁數值分析法來模擬並分析含有週期結構發光二極體的發光特性,目前被視為能夠有效改善光萃取效率(light extraction efficiency, LEE)的方法,是在氮化鎵發光二極體(GaN-based LED)表面製作一層週期性結構,利用週期性結構具有繞射的特性來提升光萃取效率。我們所使用的模擬方法是利用電偶極作為光源,並將電偶極在層狀結構中所產生的電磁場以平面波的方式表示,而經由週期性結構所產生的繞射波,可藉由嚴格耦合波分析法計算獲得,此分析法主要是利用平面波展開法的方式,解得各個滿足馬克斯威爾方程式的繞射波之解析解。我們的研究工作主要是模擬並分析薄膜垂直型發光二極體,在不同的結構參數下對光萃取效率所造成的影響,並試著提出一系列的設計準則在這一堆的結構參數中找出最佳化的數值,以達到最大光萃取效率改善的目的。我們所提出的設計準則,不但是藉由理論分析的方式找出各個結構參數與光萃取效率之間的關係,並且利用數值模擬的方法來驗證,以獲得最佳化的結構參數。最後我們證明薄膜垂直型氮化鎵發光二極體結合週期性結構,在適當的設計結構參數下,可得到超高光萃取效率~90%。zh_TW
dc.description.abstractIn this thesis, we model and analyze the emitting properties of the LED combined with periodic structure by using the rigorous electromagnetic analysis. Taking advantageous of the diffractive property of periodic structure is viewed as the promising method to improve the poor light extraction efficiency (LEE) of the gallium nitride based light-emitting diode (GaN-based LED). A key of our simulation method is the decomposition of the electric dipole embedded in the layered structure into plane waves, and the effect of the periodically patterned layer on the reflected and transmitted diffraction waves can be calculated by the rigorous coupled-wave analysis (RCWA) which is based on the plane wave expansion and is an exact solution of Maxwell’s equations. In our work, we investigate the various structural effects on the LEE in the thin film vertical LED, and then we try to guide some design trends to optimize the structural parameters for high LEE. The manner of design is not only theoretically analyzed but quantitatively demonstrated by the numerical simulation. Finally, we show that the ultra-high LEE~90% can be realized by the properly designed parameters of structure.en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:59:14Z (GMT). No. of bitstreams: 1
ntu-101-R99941022-1.pdf: 2575279 bytes, checksum: 5c50427cee993822ece9aefc2ef1f2cc (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vi
Chapter 1 Introduction 1
1.1 Literature Survey 1
1.2 Research Motivation 3
Chapter 2 Simulation Theory 6
2.1 Dipole Field Plane Wave Expansion Method 7
2.2 Rigorous Coupled-Wave Analysis [27-29] 10
2.2.1 TE Polarization 12
2.2.2 TM Polarization 17
Chapter 3 Optical Model of LED Structures and Optical Modes 21
3.1 Conventional Type LED Structure 21
3.2 Vertical Type LED Structure 23
3.3 Optical Modes 24
3.3.1 Theoretical Analysis of Resonant Modes 25
3.3.2 Numerical Simulation of Resonant Modes 27
Chapter 4 Analysis and Optimization of Structural Effects in a Planar LED Structure 37
4.1 Planar LED: GaN Thickness 37
4.2 Planar LED: Source Position 39
4.2.1 Geometric Analysis 39
4.2.2 Node and Anti-Node Factors 43
4.3 Planar LED: Summary 44
Chapter 5 Analysis and Design of Grating-Assisted LED for High Light Extraction Efficiency 48
5.1 Grating-Assisted LED: Grating Pitch 49
5.2 Grating-Assisted LED: Source Position 54
5.2.1 Geometric Analysis 54
5.2.2 Node and Anti-Node Factors 57
5.2.3 Numerical Simulation of Source Position Effect 58
5.3 Grating-Assisted LED: GaN Thickness & Grating 60
5.3.1 Diffracted Fabry-Perot Mode Effect on LEE 62
5.3.2 Diffracted Guided Mode Effect on LEE 64
5.4 Grating-Assisted LED: Summary 67
Chapter 6 Conclusion 87
REFERENCES 88
dc.language.isoen
dc.title利用二維嚴謹耦合波分析發光二極體之光萃取效率zh_TW
dc.titleTwo-Dimensional Rigorous Coupled-Wave Analysis of Light Extraction Efficiency from Light-Emitting Diodesen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林晃巖,馮開明,王子建,賴志賢
dc.subject.keyword氮化鎵,發光二極體,光萃取效率,zh_TW
dc.subject.keywordGaN,light-emitting diode,light extraction efficiency,en
dc.relation.page93
dc.rights.note有償授權
dc.date.accepted2012-07-17
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  目前未授權公開取用
2.51 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved