Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 臨床醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65688
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊友仕(Yu-Shih Yang),許金玉(Jin-Yuh Shew)
dc.contributor.authorTsung-Hsien Leeen
dc.contributor.author李宗賢zh_TW
dc.date.accessioned2021-06-16T23:59:10Z-
dc.date.available2013-09-19
dc.date.copyright2012-09-19
dc.date.issued2012
dc.date.submitted2012-07-17
dc.identifier.citationActon BM, Jurisicova A, Jurisica I, Casper RF. Alterations in mitochondrial membrane potential during preimplantation stages of mouse and human embryo development. Mol Hum Reprod. 2004 Jan; 10(1):23-32.
Agarwal A, Saleh RA, Bedaiwy MA. Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil Steril. 2003 Apr; 79(4):829-843.
Agarwal A, Allamaneni SS, Said TM. Chemiluminescence technique for measuring reactive oxygen species. Reprod Biomed Online. 2004 Oct; 9(4):466-468.
Ahn HJ, Sohn IP, Kwon HC, Jo dH, Park YD, Min CK. Characteristics of the cell membrane fluidity, actin fibers, and mitochondrial dysfunctions of frozen-thawed two-cell mouse embryos. Mol Reprod Dev. 2002 Apr; 61(4):466-476.
Alikani M, Cohen J, Tomkin G, Garrisi GJ, Mack C, Scott RT. Human embryo fragmentation in vitro and its implications for pregnancy and implantation. Fertil Steril. 1999 May; 71(5):836-842.
American Society for Reproductive Medicine. Guidelines on the number of embryos transferred. Fertil Steril. 2004 Sep; 82(3):773-774.
American Society for Reproductive Medicine. Guidelines on number of embryos transferred. Fertil Steril. 2008 Nov; 90(5 Suppl):S163-S164.
American Society for Reproductive Medicine. Guidelines on number of embryos transferred. Fertil Steril. 2009 Nov; 92(5):1518-1519.
Andersen AN, Goossens V, Ferraretti AP, Bhattacharya S, Felberbaum R, de MJ et al. Assisted reproductive technology in Europe, 2004: results generated from European registers by ESHRE. Hum Reprod. 2008 Apr; 23(4):756-771.
Anteby EY, Hurwitz A, Korach O, Revel A, Simon A, Finci-Yeheskel Z et al. Human follicular nitric oxide pathway: relationship to follicular size, oestradiol concentrations and ovarian blood flow. Hum Reprod. 1996 Sep; 11(9):1947-1951.
Balaban B, Yakin K, Urman B. Randomized comparison of two different blastocyst grading systems. Fertil Steril. 2006 Mar; 85(3):559-563.
Bar-Hava I, Ferber A, Ashkenazi J, Orvieto R, Kaplan B, Bar J et al. Does female age affect embryo morphology? Gynecol Endocrinol. 1999 Dec; 13(6):371-374.
Barrionuevo MJ, Schwandt RA, Rao PS, Graham LB, Maisel LP, Yeko TR. Nitric oxide (NO) and interleukin-1beta (IL-1beta) in follicular fluid and their correlation with fertilization and embryo cleavage. Am J Reprod Immunol. 2000 Dec; 44(6):359-364.
Barroso G, Taylor S, Morshedi M, Manzur F, Gavino F, Oehninger S. Mitochondrial membrane potential integrity and plasma membrane translocation of phosphatidylserine as early apoptotic markers: a comparison of two different sperm subpopulations. Fertil Steril. 2006 Jan; 85(1):149-154.
Barroso RP, Osuamkpe C, Nagamani M, Yallampalli C. Nitric oxide inhibits development of embryos and implantation in mice. Mol Hum Reprod. 1998 May; 4(5):503-507.
Battaglia C, Salvatori M, Maxia N, Petraglia F, Facchinetti F, Volpe A. Adjuvant L-arginine treatment for in-vitro fertilization in poor responder patients. Hum Reprod. 1999 Jul; 14(7):1690-1697.
Battaglia C, Regnani G, Marsella T, Facchinetti F, Volpe A, Venturoli S et al. Adjuvant L-arginine treatment in controlled ovarian hyperstimulation: a double-blind, randomized study. Hum Reprod. 2002 Mar; 17(3):659-665.
Bedaiwy MA, Falcone T, Mohamed MS, Aleem AA, Sharma RK, Worley SE et al. Differential growth of human embryos in vitro: role of reactive oxygen species. Fertil Steril. 2004 Sep; 82(3):593-600.
Bedaiwy MA, Mahfouz RZ, Goldberg JM, Sharma R, Falcone T, Abdel Hafez MF et al. Relationship of reactive oxygen species levels in day 3 culture media to the outcome of in vitro fertilization/intracytoplasmic sperm injection cycles. Fertil Steril. 2010 Nov; 94(6):2037-2042.
Beesley R, Robinson R, Propst A, Arthur N, Retzloff M. Impact of day 3 or day 5 embryo transfer on pregnancy rates and multiple gestations. Fertil Steril. 2009 May; 91(5):1717-1720.
Beltran B, Orsi A, Clementi E, Moncada S. Oxidative stress and S-nitrosylation of proteins in cells. Br J Pharmacol. 2000 Mara; 129(5):953-960.
Beltran B, Mathur A, Duchen MR, Erusalimsky JD, Moncada S. The effect of nitric oxide on cell respiration: A key to understanding its role in cell survival or death. Proc Natl Acad Sci U S A. 2000 Dec 19b; 97(26):14602-14607.
Benhar M. Nitrosative stress in the ER: a new role for S-nitrosylation in neurodegenerative diseases. 2006 Jul 21.
Betts DH, Madan P. Permanent embryo arrest: molecular and cellular concepts. Mol Hum Reprod. 2008 Aug; 14(8):445-453.
Bischoff F, Simpson JL. Genetics of endometriosis: heritability and candidate genes. Best Pract Res Clin Obstet Gynaecol. 2004 Apr; 18(2):219-232.
Blake DA, Farquhar CM, Johnson N, Proctor M. Cleavage stage versus blastocyst stage embryo transfer in assisted conception. Cochrane Database Syst Rev. 2007;(4):CD002118.
Blashkiv TV, Korniichuk AN, Voznesenskaya TY, Pornichenko AG. Role of nitric oxide in ovulation, meiotic maturation of oocytes, and implantation in mice. Bull Exp Biol Med. 2001 Nov; 132(5):1034-1036.
Brookes PS, Salinas EP, Darley-Usmar K, Eiserich JP, Freeman BA, Darley-Usmar VM et al. Concentration-dependent effects of nitric oxide on mitochondrial permeability transition and cytochrome c release. J Biol Chem. 2000 Jul 7; 275(27):20474-20479.
Brown GC. Nitric oxide regulates mitochondrial respiration and cell functions by inhibiting cytochrome oxidase. FEBS Lett. 1995 Aug 7; 369(2-3):136-139.
Bustamante J, Bersier G, Badin RA, Cymeryng C, Parodi A, Boveris A. Sequential NO production by mitochondria and endoplasmic reticulum during induced apoptosis. Nitric Oxide. 2002 May; 6(3):333-341.
Chatterjee S, Gangula PR, Dong YL, Yallampalli C. Immunocytochemical localization of nitric oxide synthase-III in reproductive organs of female rats during the oestrous cycle. Histochem J. 1996 Oct; 28(10):715-723.
Cheang CU, Huang LS, Lee TH, Liu CH, Shih YT, Lee MS. A comparison of the outcomes between twin and reduced twin pregnancies produced through assisted reproduction. Fertil Steril. 2007 Jul; 88(1):47-52.
Chen HW, Jiang WS, Tzeng CR. Nitric oxide as a regulator in preimplantation embryo development and apoptosis. Fertil Steril. 2001 Jun; 75(6):1163-1171.
Chi MM, Hoehn A, Moley KH. Metabolic changes in the glucose-induced apoptotic blastocyst suggest alterations in mitochondrial physiology. Am J Physiol Endocrinol Metab. 2002 Aug; 283(2):E226-E232.
Chuang CC, Chen CD, Chao KH, Chen SU, Ho HN, Yang YS. Age is a better predictor of pregnancy potential than basal follicle-stimulating hormone levels in women undergoing in vitro fertilization. Fertil Steril. 2003 Jan; 79(1):63-68.
Chung HT, Pae HO, Choi BM, Billiar TR, Kim YM. Nitric oxide as a bioregulator of apoptosis. Biochem Biophys Res Commun. 2001 Apr 20; 282(5):1075-1079.
Chwalisz K, Garfield RE. Role of nitric oxide in implantation and menstruation. Hum Reprod. 2000 Aug; 15 Suppl 3:96-111.
Ciray HN, Karagenc L, Ulug U, Bener F, Bahceci M. Use of both early cleavage and day 2 mononucleation to predict embryos with high implantation potential in intracytoplasmic sperm injection cycles. Fertil Steril. 2005 Nov; 84(5):1411-1416.
Clementi E, Brown GC, Feelisch M, Moncada S. Persistent inhibition of cell respiration by nitric oxide: crucial role of S-nitrosylation of mitochondrial complex I and protective action of glutathione. Proc Natl Acad Sci U S A. 1998 Jun 23; 95(13):7631-7636.
Corraliza IM, Campo ML, Fuentes JM, Campos-Portuguez S, Soler G. Parallel induction of nitric oxide and glucose-6-phosphate dehydrogenase in activated bone marrow derived macrophages. Biochem Biophys Res Commun. 1993 Oct 15; 196(1):342-347.
Cummins JM. The role of maternal mitochondria during oogenesis, fertilization and embryogenesis. Reprod Biomed Online. 2002 Mar; 4(2):176-182.
Dalle-Donne I, Rossi R, Giustarini D, Colombo R, Milzani A. S-glutathionylation in protein redox regulation. Free Radic Biol Med. 2007 Sep 15; 43(6):883-898.
Das S, Chattopadhyay R, Ghosh S, Ghosh S, Goswami SK, Chakravarty BN et al. Reactive oxygen species level in follicular fluid--embryo quality marker in IVF? Hum Reprod. 2006 Sep; 21(9):2403-2407.
de Lamirande E, Harakat A, Gagnon C. Human sperm capacitation induced by biological fluids and progesterone, but not by NADH or NADPH, is associated with the production of superoxide anion. J Androl. 1998 Mar; 19(2):215-225.
De JC. Biological basis for human capacitation. Hum Reprod Update. 2005 May; 11(3):205-214.
de LE, O'Flaherty C. Sperm activation: role of reactive oxygen species and kinases. Biochim Biophys Acta. 2008 Jan; 1784(1):106-115.
de LE, Lamothe G. Reactive oxygen-induced reactive oxygen formation during human sperm capacitation. Free Radic Biol Med. 2009 Feb 15; 46(4):502-510.
Devreker F, Hardy K. Effects of glutamine and taurine on preimplantation development and cleavage of mouse embryos in vitro. Biol Reprod. 1997 Oct; 57(4):921-928.
Dumollard R, Marangos P, Fitzharris G, Swann K, Duchen M, Carroll J. Sperm-triggered [Ca2+] oscillations and Ca2+ homeostasis in the mouse egg have an absolute requirement for mitochondrial ATP production. Development. 2004 Jul; 131(13):3057-3067.
Dumollard R, Ward Z, Carroll J, Duchen MR. Regulation of redox metabolism in the mouse oocyte and embryo. Development. 2007 Feb; 134(3):455-465.
Dumollard R, Campbell K, Halet G, Carroll J, Swann K. Regulation of cytosolic and mitochondrial ATP levels in mouse eggs and zygotes. Dev Biol. 2008 Apr 15; 316(2):431-440.
Dumollard R, Carroll J, Duchen MR, Campbell K, Swann K. Mitochondrial function and redox state in mammalian embryos. Semin Cell Dev Biol. 2009 May; 20(3):346-353.
El Mouatassim S, Guerin P, Menezo Y. Expression of genes encoding antioxidant enzymes in human and mouse oocytes during the final stages of maturation. Mol Hum Reprod. 1999 Aug; 5(8):720-725.
European Society of Human Reproduction and Embryology. Prevention of twin pregnancies after IVF/ICSI by single embryo transfer. ESHRE Campus Course Report. Hum Reprod. 2001 Apr; 16(4):790-800.
Faddy MJ, Gosden RG, Gougeon A, Richardson SJ, Nelson JF. Accelerated disappearance of ovarian follicles in mid-life: implications for forecasting menopause. Hum Reprod. 1992 Nov; 7(10):1342-1346.
Faddy MJ, Gosden RG. A mathematical model of follicle dynamics in the human ovary. Hum Reprod. 1995 Apr; 10(4):770-775.
Fanchin R, Schonauer LM, Righini C, Guibourdenche J, Frydman R, Taieb J. Serum anti-Mullerian hormone is more strongly related to ovarian follicular status than serum inhibin B, estradiol, FSH and LH on day 3. Hum Reprod. 2003 Feb; 18(2):323-327.
Faulkner KM, Liochev SI, Fridovich I. Stable Mn(III) porphyrins mimic superoxide dismutase in vitro and substitute for it in vivo. J Biol Chem. 1994 Sep 23; 269(38):23471-23476.
Felberbaum RE, Reissmann T, Kupker W, Bauer O, al Hasani S, Diedrich C et al. Preserved pituitary response under ovarian stimulation with HMG and GnRH antagonists (Cetrorelix) in women with tubal infertility. Eur J Obstet Gynecol Reprod Biol. 1995 Aug; 61(2):151-155.
Foster MW, Stamler JS. New insights into protein S-nitrosylation. Mitochondria as a model system. J Biol Chem. 2004 Jun 11; 279(24):25891-25897.
Fujii J, Iuchi Y, Okada F. Fundamental roles of reactive oxygen species and protective mechanisms in the female reproductive system. Reprod Biol Endocrinol. 2005; 3:43.
Gardiner CS, Salmen JJ, Brandt CJ, Stover SK. Glutathione is present in reproductive tract secretions and improves development of mouse embryos after chemically induced glutathione depletion. Biol Reprod. 1998 Aug; 59(2):431-436.
Gardner DK, Lane M, Batt P. Uptake and metabolism of pyruvate and glucose by individual sheep preattachment embryos developed in vivo. Mol Reprod Dev. 1993 Nov; 36(3):313-319.
Gardner DK, Schoolcraft WB, Wagley L, Schlenker T, Stevens J, Hesla J. A prospective randomized trial of blastocyst culture and transfer in in-vitro fertilization. Hum Reprod. 1998 Dec; 13(12):3434-3440.
Gardner DK, Lane M, Stevens J, Schlenker T, Schoolcraft WB. Blastocyst score affects implantation and pregnancy outcome: towards a single blastocyst transfer. Fertil Steril. 2000 Jun; 73(6):1155-1158.
Gardner DK, Lane M. Towards a single embryo transfer. Reprod Biomed Online. 2003 Jun; 6(4):470-481.
Gardner DK, Surrey E, Minjarez D, Leitz A, Stevens J, Schoolcraft WB. Single blastocyst transfer: a prospective randomized trial. Fertil Steril. 2004 Mar; 81(3):551-555.
Garenne M. Do women forget their births? A study of maternity histories in a rural area of Senegal (Niakhar). Popul Bull UN. 1994;(36):43-54.
Gerris JM. Single embryo transfer and IVF/ICSI outcome: a balanced appraisal. Hum Reprod Update. 2005 Mar; 11(2):105-121.
Gianaroli L, Magli MC, Ferraretti AP, Fiorentino A, Garrisi J, Munne S. Preimplantation genetic diagnosis increases the implantation rate in human in vitro fertilization by avoiding the transfer of chromosomally abnormal embryos. Fertil Steril. 1997 Dec; 68(6):1128-1131.
Giorgetti C, Terriou P, Auquier P, Hans E, Spach JL, Salzmann J et al. Embryo score to predict implantation after in-vitro fertilization: based on 957 single embryo transfers. Hum Reprod. 1995 Sep; 10(9):2427-2431.
Gleicher N, Barad D. The relative myth of elective single embryo transfer. Hum Reprod. 2006 Jun; 21(6):1337-1344.
Goto Y, Noda Y, Mori T, Nakano M. Increased generation of reactive oxygen species in embryos cultured in vitro. Free Radic Biol Med. 1993 Jul; 15(1):69-75.
Green DR. Apoptotic pathways: paper wraps stone blunts scissors. Cell. 2000 Jul 7; 102(1):1-4.
Griffith OW, Stuehr DJ. Nitric oxide synthases: properties and catalytic mechanism. Annu Rev Physiol. 1995; 57:707-736.
Guerin P, El Mouatassim S, Menezo Y. Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Hum Reprod Update. 2001 Mar; 7(2):175-189.
Guo SW. Glutathione S-transferases M1/T1 gene polymorphisms and endometriosis: a meta-analysis of genetic association studies. Mol Hum Reprod. 2005 Oct; 11(10):729-743.
Hefler LA, Gregg AR. Inducible and endothelial nitric oxide synthase: genetic background affects ovulation in mice. Fertil Steril. 2002 Jan; 77(1):147-151.
Houghton FD, Leese HJ. Metabolism and developmental competence of the preimplantation embryo. Eur J Obstet Gynecol Reprod Biol. 2004 Jul 1; 115 Suppl 1:S92-S96.
Hu Y, Maxson WS, Hoffman DI, Ory SJ, Eager S, Dupre J et al. Maximizing pregnancy rates and limiting higher-order multiple conceptions by determining the optimal number of embryos to transfer based on quality. Fertil Steril. 1998 Apr; 69(4):650-657.
Huang CC, Lin DP, Tsao HM, Cheng TC, Liu CH, Lee MS. Sperm DNA fragmentation negatively correlates with velocity and fertilization rates but might not affect pregnancy rates. Fertil Steril. 2005 Jul; 84(1):130-140.
Inoue Y, Bode BP, Beck DJ, Li AP, Bland KI, Souba WW. Arginine transport in human liver. Characterization and effects of nitric oxide synthase inhibitors. Ann Surg. 1993 Sep; 218(3):350-362.
Jablonka-Shariff A, Olson LM. Hormonal regulation of nitric oxide synthases and their cell-specific expression during follicular development in the rat ovary. Endocrinology. 1997 Jan; 138(1):460-468.
Jablonka-Shariff A, Olson LM. The role of nitric oxide in oocyte meiotic maturation and ovulation: meiotic abnormalities of endothelial nitric oxide synthase knock-out mouse oocytes. Endocrinology. 1998 Jun; 139(6):2944-2954.
Jaffrey SR, Snyder SH. The biotin switch method for the detection of S-nitrosylated proteins. Sci STKE. 2001 Jun 12; 2001(86):l1.
Jain T, Harlow BL, Hornstein MD. Insurance coverage and outcomes of in vitro fertilization. N Engl J Med. 2002 Aug 29; 347(9):661-666.
Jain T, Hornstein MD. To pay or not to pay. Fertil Steril. 2003 Jul; 80(1):27-29.
Jain T, Missmer SA, Hornstein MD. Trends in embryo-transfer practice and in outcomes of the use of assisted reproductive technology in the United States. N Engl J Med. 2004 Apr 15; 350(16):1639-1645.
Jansen RP, de Boer K. The bottleneck: mitochondrial imperatives in oogenesis and ovarian follicular fate. Mol Cell Endocrinol. 1998 Oct 25; 145(1-2):81-88.
Janssen-Heininger YM, Mossman BT, Heintz NH, Forman HJ, Kalyanaraman B, Finkel T et al. Redox-based regulation of signal transduction: principles, pitfalls, and promises. Free Radic Biol Med. 2008 Jul 1; 45(1):1-17.
Joo BS, Park SH, Park SJ, Kang HS, Moon HS, Kim HD. The effect of nitric oxide on sperm cell function and embryo development. Am J Reprod Immunol. 1999 Dec; 42(6):327-334.
Jurisicova A, Varmuza S, Casper RF. Programmed cell death and human embryo fragmentation. Mol Hum Reprod. 1996 Feb; 2(2):93-98.
Kim H, Ku SY, Kim SH, Lee GH, Choi YM, Kim JM et al. Endothelial nitric oxide synthase gene Glu298Asp polymorphism is associated with advanced stage endometriosis. Hum Reprod. 2009 Oct; 24(10):2656-2659.
Kobayashi H, Gil-Guzman E, Mahran AM, Rakesh, Nelson DR, Thomas AJ, Jr. et al. Quality control of reactive oxygen species measurement by luminol-dependent chemiluminescence assay. J Androl. 2001 Jul; 22(4):568-574.
Kroemer G, Reed JC. Mitochondrial control of cell death. Nat Med. 2000 May; 6(5):513-519.
Kuo RC, Baxter GT, Thompson SH, Stricker SA, Patton C, Bonaventura J et al. NO is necessary and sufficient for egg activation at fertilization. Nature. 2000 Aug 10; 406(6796):633-636.
Lee KS, Joo BS, Na YJ, Yoon MS, Choi OH, Kim WW. Relationships between concentrations of tumor necrosis factor-alpha and nitric oxide in follicular fluid and oocyte quality. J Assist Reprod Genet. 2000 Apr; 17(4):222-228.
Lee MS, Liu CH, Lee TH, Wu HM, Huang CC, Huang LS et al. Association of creatin kinase B and peroxiredoxin 2 expression with age and embryo quality in cumulus cells. J Assist Reprod Genet. 2010 Nov; 27(11):629-639.
Lee TH, Wu MY, Chen MJ, Chao KH, Ho HN, Yang YS. Nitric oxide is associated with poor embryo quality and pregnancy outcome in in vitro fertilization cycles. Fertil Steril. 2004 Jul; 82(1):126-131.
Lee TH, Wu MY, Chen HF, Chen MJ, Ho HN, Yang YS. Ovarian response and follicular development for single-dose and multiple-dose protocols for gonadotropin-releasing hormone antagonist administration. Fertil Steril. 2005 Jun; 83(6):1700-1707.
Lee TH, Liu CH, Huang CC, Hsieh KC, Lin PM, Lee MS. Impact of female age and male infertility on ovarian reserve markers to predict outcome of assisted reproduction technology cycles. Reprod Biol Endocrinol. 2009; 7:100.
Lee VY, McClintock DS, Santore MT, Budinger GR, Chandel NS. Hypoxia sensitizes cells to nitric oxide-induced apoptosis. J Biol Chem. 2002 May 3; 277(18):16067-16074.
Liu CH, Tsao HM, Cheng TC, Wu HM, Huang CC, Chen CI et al. DNA fragmentation, mitochondrial dysfunction and chromosomal aneuploidy in the spermatozoa of oligoasthenoteratozoospermic males. J Assist Reprod Genet. 2004 Apr; 21(4):119-126.
Liu L, Trimarchi JR, Keefe DL. Involvement of mitochondria in oxidative stress-induced cell death in mouse zygotes. Biol Reprod. 2000 Jun; 62(6):1745-1753.
Lopes AS, Lane M, Thompson JG. Oxygen consumption and ROS production are increased at the time of fertilization and cell cleavage in bovine zygotes. Hum Reprod. 2010 Nov; 25(11):2762-2773.
Luberda Z. The role of glutathione in mammalian gametes. Reprod Biol. 2005 Mar; 5(1):5-17.
Machado-Oliveira G, Lefievre L, Ford C, Herrero MB, Barratt C, Connolly TJ et al. Mobilisation of Ca2+ stores and flagellar regulation in human sperm by S-nitrosylation: a role for NO synthesised in the female reproductive tract. Development. 2008 Nov; 135(22):3677-3686.
Magli MC, Jones GM, Gras L, Gianaroli L, Korman I, Trounson AO. Chromosome mosaicism in day 3 aneuploid embryos that develop to morphologically normal blastocysts in vitro. Hum Reprod. 2000 Aug; 15(8):1781-1786.
Manau D, Balasch J, Jimenez W, Fabregues F, Casamitjana R, Creus M et al. Adrenomedullin and nitric oxide in menstrual and in vitro fertilization cycles. Relationship to estradiol. Acta Obstet Gynecol Scand. 1999 Aug; 78(7):626-631.
Manau D, Balasch J, Jimenez W, Fabregues F, Civico S, Casamitjana R et al. Follicular fluid concentrations of adrenomedullin, vascular endothelial growth factor and nitric oxide in IVF cycles: relationship to ovarian response. Hum Reprod. 2000 Jun; 15(6):1295-1299.
Mannick JB, Schonhoff C, Papeta N, Ghafourifar P, Szibor M, Fang K et al. S-Nitrosylation of mitochondrial caspases. J Cell Biol. 2001 Sep 17; 154(6):1111-1116.
Manser RC, Houghton FD. Ca2+ -linked upregulation and mitochondrial production of nitric oxide in the mouse preimplantation embryo. J Cell Sci. 2006 May 15; 119(Pt 10):2048-2055.
Marquez C, Sandalinas M, Bahce M, Alikani M, Munne S. Chromosome abnormalities in 1255 cleavage-stage human embryos. Reprod Biomed Online. 2000; 1(1):17-26.
McConnell JM, Petrie L. Mitochondrial DNA turnover occurs during preimplantation development and can be modulated by environmental factors. Reprod Biomed Online. 2004 Oct; 9(4):418-424.
Miyazaki T, Sueoka K, Dharmarajan AM, Atlas SJ, Bulkley GB, Wallach EE. Effect of inhibition of oxygen free radical on ovulation and progesterone production by the in-vitro perfused rabbit ovary. J Reprod Fertil. 1991 Jan; 91(1):207-212.
Moncada S, Erusalimsky JD. Does nitric oxide modulate mitochondrial energy generation and apoptosis? Nat Rev Mol Cell Biol. 2002 Mar; 3(3):214-220.
Nasr-Esfahani MM, Johnson MH. The origin of reactive oxygen species in mouse embryos cultured in vitro. Development. 1991 Oct; 113(2):551-560.
Nathan C, Xie QW. Nitric oxide synthases: roles, tolls, and controls. Cell. 1994 Sep 23a; 78(6):915-918.
Nathan C, Xie QW. Regulation of biosynthesis of nitric oxide. J Biol Chem. 1994 May 13b; 269(19):13725-13728.
Nishikimi A, Matsukawa T, Hoshino K, Ikeda S, Kira Y, Sato EF et al. Localization of nitric oxide synthase activity in unfertilized oocytes and fertilized embryos during preimplantation development in mice. Reproduction. 2001 Dec; 122(6):957-963.
Nisoli E, Clementi E, Paolucci C, Cozzi V, Tonello C, Sciorati C et al. Mitochondrial biogenesis in mammals: the role of endogenous nitric oxide. Science. 2003 Feb 7; 299(5608):896-899.
Nisoli E, Tonello C, Cardile A, Cozzi V, Bracale R, Tedesco L et al. Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science. 2005 Oct 14; 310(5746):314-317.
O'Flaherty C, de LE, Gagnon C. Reactive oxygen species modulate independent protein phosphorylation pathways during human sperm capacitation. Free Radic Biol Med. 2006 Mar 15; 40(6):1045-1055.
Ota H, Igarashi S, Oyama N, Suzuki Y, Tanaka T. Optimal levels of nitric oxide are crucial for implantation in mice. Reprod Fertil Dev. 1999; 11(3):183-188.
Papanikolaou EG, Camus M, Kolibianakis EM, Van Landuyt L, Van Steirteghem A, Devroey P. In vitro fertilization with single blastocyst-stage versus single cleavage-stage embryos. N Engl J Med. 2006 Mar 16; 354(11):1139-1146.
Paradis M, Gagne J, Mateescu MA, Paquin J. The effects of nitric oxide-oxidase and putative glutathione-peroxidase activities of ceruloplasmin on the viability of cardiomyocytes exposed to hydrogen peroxide. Free Radic Biol Med. 2010 Dec 15; 49(12):2019-2027.
Pasqualotto EB, Agarwal A, Sharma RK, Izzo VM, Pinotti JA, Joshi NJ et al. Effect of oxidative stress in follicular fluid on the outcome of assisted reproductive procedures. Fertil Steril. 2004 Apr; 81(4):973-976.
Quinn P. Enhanced results in mouse and human embryo culture using a modified human tubal fluid medium lacking glucose and phosphate. J Assist Reprod Genet. 1995 Feb; 12(2):97-105.
Racowsky C, Combelles CM, Nureddin A, Pan Y, Finn A, Miles L et al. Day 3 and day 5 morphological predictors of embryo viability. Reprod Biomed Online. 2003 Apr; 6(3):323-331.
Reers M, Smith TW, Chen LB. J-aggregate formation of a carbocyanine as a quantitative fluorescent indicator of membrane potential. Biochemistry. 1991 May 7; 30(18):4480-4486.
Reers M, Smiley ST, Mottola-Hartshorn C, Chen A, Lin M, Chen LB. Mitochondrial membrane potential monitored by JC-1 dye. Methods Enzymol. 1995; 260:406-417.
Rehman KS, Bukulmez O, Langley M, Carr BR, Nackley AC, Doody KM et al. Late stages of embryo progression are a much better predictor of clinical pregnancy than early cleavage in intracytoplasmic sperm injection and in vitro fertilization cycles with blastocyst-stage transfer. Fertil Steril. 2007 May; 87(5):1041-1052.
Riley JK, Moley KH. Glucose utilization and the PI3-K pathway: mechanisms for cell survival in preimplantation embryos. Reproduction. 2006 May; 131(5):823-835.
Roest J, van Heusden AM, Verhoeff A, Mous HV, Zeilmaker GH. A triplet pregnancy after in vitro fertilization is a procedure-related complication that should be prevented by replacement of two embryos only. Fertil Steril. 1997 Feb; 67(2):290-295.
Roseboom TJ, Vermeiden JP, Schoute E, Lens JW, Schats R. The probability of pregnancy after embryo transfer is affected by the age of the patient, cause of infertility, number of embryos transferred and the average morphology score, as revealed by multiple logistic regression analysis. Hum Reprod. 1995 Nov; 10(11):3035-3041.
Rosselli M, Keller PJ, Dubey RK. Role of nitric oxide in the biology, physiology and pathophysiology of reproduction. Hum Reprod Update. 1998 Jan; 4(1):3-24.
Ruiz-Stewart I, Tiyyagura SR, Lin JE, Kazerounian S, Pitari GM, Schulz S et al. Guanylyl cyclase is an ATP sensor coupling nitric oxide signaling to cell metabolism. Proc Natl Acad Sci U S A. 2004 Jan 6; 101(1):37-42.
Schieve LA, Peterson HB, Meikle SF, Jeng G, Danel I, Burnett NM et al. Live-birth rates and multiple-birth risk using in vitro fertilization. JAMA. 1999 Nov 17; 282(19):1832-1838.
Scott RT, Jr., Treff NR. Assessing the reproductive competence of individual embryos: a proposal for the validation of new '-omics' technologies. Fertil Steril. 2010 Aug; 94(3):791-794.
Seli E, Sakkas D, Scott R, Kwok SC, Rosendahl SM, Burns DH. Noninvasive metabolomic profiling of embryo culture media using Raman and near-infrared spectroscopy correlates with reproductive potential of embryos in women undergoing in vitro fertilization. Fertil Steril. 2007 Nov; 88(5):1350-1357.
Seli E, Vergouw CG, Morita H, Botros L, Roos P, Lambalk CB et al. Noninvasive metabolomic profiling as an adjunct to morphology for noninvasive embryo assessment in women undergoing single embryo transfer. Fertil Steril. 2010 Jul; 94(2):535-542.
Sengoku K, Tamate K, Yoshida T, Takaoka Y, Miyamoto T, Ishikawa M. Effects of low concentrations of nitric oxide on the zona pellucida binding ability of human spermatozoa. Fertil Steril. 1998 Mar; 69(3):522-527.
Sengoku K, Takuma N, Horikawa M, Tsuchiya K, Komori H, Sharifa D et al. Requirement of nitric oxide for murine oocyte maturation, embryo development, and trophoblast outgrowth in vitro. Mol Reprod Dev. 2001 Mar; 58(3):262-268.
Sher G, Fisch JD. Vaginal sildenafil (Viagra): a preliminary report of a novel method to improve uterine artery blood flow and endometrial development in patients undergoing IVF. Hum Reprod. 2000 Apr; 15(4):806-809.
Shiva S, Brookes PS, Patel RP, Anderson PG, Darley-Usmar VM. Nitric oxide partitioning into mitochondrial membranes and the control of respiration at cytochrome c oxidase. Proc Natl Acad Sci U S A. 2001 Jun 19; 98(13):7212-7217.
Souza JM, Peluffo G, Radi R. Protein tyrosine nitration--functional alteration or just a biomarker? Free Radic Biol Med. 2008 Aug 15; 45(4):357-366.
Staessen C, Platteau P, Van Assche E, Michiels A, Tournaye H, Camus M et al. Comparison of blastocyst transfer with or without preimplantation genetic diagnosis for aneuploidy screening in couples with advanced maternal age: a prospective randomized controlled trial. Hum Reprod. 2004 Dec; 19(12):2849-2858.
Stamler JS, Lamas S, Fang FC. Nitrosylation. the prototypic redox-based signaling mechanism. Cell. 2001 Sep 21; 106(6):675-683.
Steer CV, Mills CL, Tan SL, Campbell S, Edwards RG. The cumulative embryo score: a predictive embryo scoring technique to select the optimal number of embryos to transfer in an in-vitro fertilization and embryo transfer programme. Hum Reprod. 1992 Jan; 7(1):117-119.
Strandell A, Bergh C, Lundin K. Selection of patients suitable for one-embryo transfer may reduce the rate of multiple births by half without impairment of overall birth rates. Hum Reprod. 2000 Dec; 15(12):2520-2525.
Takahashi M, Nagai T, Hamano S, Kuwayama M, Okamura N, Okano A. Effect of thiol compounds on in vitro development and intracellular glutathione content of bovine embryos. Biol Reprod. 1993 Aug; 49(2):228-232.
Tempfer CB, Simoni M, Destenaves B, Fauser BC. Functional genetic polymorphisms and female reproductive disorders: part II--endometriosis. Hum Reprod Update. 2009 Jan; 15(1):97-118.
Templeton A, Morris JK. Reducing the risk of multiple births by transfer of two embryos after in vitro fertilization. N Engl J Med. 1998 Aug 27; 339(9):573-577.
Terriou P, Sapin C, Giorgetti C, Hans E, Spach JL, Roulier R. Embryo score is a better predictor of pregnancy than the number of transferred embryos or female age. Fertil Steril. 2001 Mar; 75(3):525-531.
Thundathil J, Filion F, Smith LC. Molecular control of mitochondrial function in preimplantation mouse embryos. Mol Reprod Dev. 2005 Aug; 71(4):405-413.
Thurin A, Hausken J, Hillensjo T, Jablonowska B, Pinborg A, Strandell A et al. Elective single-embryo transfer versus double-embryo transfer in in vitro fertilization. N Engl J Med. 2004 Dec 2; 351(23):2392-2402.
Tranguch S, Steuerwald N, Huet-Hudson YM. Nitric oxide synthase production and nitric oxide regulation of preimplantation embryo development. Biol Reprod. 2003 May; 68(5):1538-1544.
Trimarchi JR, Liu L, Porterfield DM, Smith PJ, Keefe DL. Oxidative phosphorylation-dependent and -independent oxygen consumption by individual preimplantation mouse embryos. Biol Reprod. 2000 Jun; 62(6):1866-1874.
Van Blerkom J, Davis PW, Lee J. ATP content of human oocytes and developmental potential and outcome after in-vitro fertilization and embryo transfer. Hum Reprod. 1995 Feb; 10(2):415-424.
Van Blerkom J, Davis P, Alexander S. Differential mitochondrial distribution in human pronuclear embryos leads to disproportionate inheritance between blastomeres: relationship to microtubular organization, ATP content and competence. Hum Reprod. 2000 Dec; 15(12):2621-2633.
van Kooij RJ, Looman CW, Habbema JD, Dorland M, te Velde ER. Age-dependent decrease in embryo implantation rate after in vitro fertilization. Fertil Steril. 1996 Nov; 66(5):769-775.
Van Royen E, Mangelschots K, De Neubourg D, Valkenburg M, Van de MM, Ryckaert G et al. Characterization of a top quality embryo, a step towards single-embryo transfer. Hum Reprod. 1999 Sep; 14(9):2345-2349.
Van BJ, Davis P, Mathwig V, Alexander S. Domains of high-polarized and low-polarized mitochondria may occur in mouse and human oocytes and early embryos. Hum Reprod. 2002 Feb; 17(2):393-406.
Vignini A, Nanetti L, Buldreghini E, Moroni C, Ricciardo-Lamonica G, Mantero F et al. The production of peroxynitrite by human spermatozoa may affect sperm motility through the formation of protein nitrotyrosine. Fertil Steril. 2006 Apr; 85(4):947-953.
Visser DS, Fourie FR. The applicability of the cumulative embryo score system for embryo selection and quality control in an in-vitro fertilization/embryo transfer programme. Hum Reprod. 1993 Oct; 8(10):1719-1722.
Wiener-Megnazi Z, Vardi L, Lissak A, Shnizer S, Reznick AZ, Ishai D et al. Oxidative stress indices in follicular fluid as measured by the thermochemiluminescence assay correlate with outcome parameters in in vitro fertilization. Fertil Steril. 2004 Oct; 82 Suppl 3:1171-1176.
Wilding M, Dale B, Marino M, di Matteo L, A
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65688-
dc.description.abstract試管嬰兒療程於刺激排卵及體外受精後,胚胎須在體外培養二至五天然後才植入子宮。培養的過程中每個胚胎發育的能力不一,有的胚胎生長良好,有些分裂速度較慢甚至停止分裂,有些則會出現細胞質的碎片。由於試管嬰兒療程的懷孕率有限,許多人工生殖機構為提高成功懷孕率,傾向植入數目較多的胚胎。而台灣對於試管嬰兒療程,醫療保險並未給付,患者對於懷孕成功的要求十分殷切,相對提高患者對多胞胎妊娠的忍受程度,造成後續高危險妊娠及早產兒的風險大為提高,從而耗費相當可觀的醫療資源。據此,本研究認為有必要針對分裂期(第三天)及囊胚期(第五天)胚胎植入的治療週期建立一套篩選標準,並提供依循這套選擇標準植入胚胎後,後續可能的懷孕率及多胞胎妊娠比率等相關數據,以便臨床醫師可以提供不孕夫妻適當的諮詢及建議。
本研究分別針對第三天胚胎及第五天囊胚植入的療程,以傳統胚胎型態選擇方法,分析其懷孕成功率及多胞胎妊娠率,結果發現第三天胚胎植入的療程,最佳三顆胚胎型態總分對於年齡小於35歲女性的族群,具有良好的能力以估計懷孕成功率及多胞胎妊娠率;但35歲以上女性的懷孕成功率,與胚胎型態就比較沒有關聯,反而與女性的年齡關係密切。對於囊胚療程來說,結果是類似的,只是對小於35歲的女性族群來說,最佳二顆及一顆囊胚的型態就可以分別估計療程懷孕成功率及多胞胎妊娠率;而最佳三顆囊胚型態的影響力可以擴充到介於35歲到38歲的女性;然而對於38 歲以上女性來說,仍須依賴女性的年齡以估計懷孕成功率。
上述的分析指出:胚胎品質對試管嬰兒療程懷孕成功率的影響甚鉅,而體外發育的胚胎,部分會停止分裂,這些胚胎被視為發生細胞老化的現象,且與粒線體內氧化自由基濃度有關。至於胚胎細胞出現碎片,則被認為是細胞凋亡的現象,並與細胞內氧化自由基濃度有關。胚胎分裂速度及胚胎碎片的多寡正好是胚胎型態的主要條件,因此本文接下來探討胚胎體外發育的微環境,也就是收集使用三天後的胚胎培養液,分析其中氧化自由基濃度與胚胎品質及著床能力的關聯性。結果發現:第三天胚胎培養液的氧化自由基濃度越高,則胚胎碎片程度越嚴重,且連帶胚胎的著床能力也下降。
胚胎細胞內的氧化自由基濃度與粒線體的代謝有關,而體細胞的研究中,一氧化氮具有調控粒線體呼吸的功能。我們先前的研究指出子宮內膜異位症患者,其異位的子宮內膜組織中一氧化氮合成酶表現增加,且一氧化氮的濃度升高,這可能是子宮內膜異位症造成不孕症的分子生物因素之一。此外,濾泡液中一氧化氮濃度升高,對於試管嬰兒療程第三天胚胎的品質有負面的影響。因此,後續以一個細胞期(合子)鼠胚體外發育過程作為動物模式,探討微環境中一氧化氮對於胚胎早期發育,尤其是粒線體功能的影響。
鼠胚實驗的結果發現,對照組的鼠胚在兩個細胞期胚胎的時候,會出現蛋白質巰基亞硝基化(S-nitrosylation)的狀況,且此時期巰基亞硝基化蛋白質與粒線體的位置相疊合。加入一氧化氮合成酶抑制劑之後,則會略微降低蛋白質巰基亞硝基化,然後讓鼠胚停留在兩個細胞期。倘若加入一氧化氮提供劑,則會造成巰基亞硝基化的程度提高,且逐漸出現胚胎碎片及細胞凋亡的現象。反之,若加入抗氧化劑如穀胱甘肽及類似超氧化物歧化酶的物質,則發現可以抵銷一氧化氮的負面作用,讓鼠胚得以繼續發育成為囊胚。其中,穀胱甘肽的效果最好,不但蛋白質巰基亞硝基化的程度恢復正常,且發育成的囊胚的腺苷三磷酸(ATP)的含量也正常。至於超氧化物歧化酶的效果則不是非常理想,因為蛋白質巰基亞硝基化的程度下降有限,並未恢復到正常程度,且囊胚的腺苷三磷酸的含量也較低。
總結來說,試管嬰兒療程體外受精後可得到一批批胚胎,同一批胚胎的發育能力並不相同。體外培養三到五天後,品質最佳的前三顆胚胎及女性年齡,可以用來指引醫師與患者夫婦協調植入胚胎的數目。而胚胎發育品質及後續的著床能力則與培養液中的氧化自由基濃度有關聯。鼠胚的實驗證實一氧化氮對於胚胎發育是必須的,但是太多量的一氧化氮反而會造成細胞碎片及凋亡,而加入抗氧化劑則有助於胚胎發育,這些作用機制都與粒線體的活性及蛋白質巰基亞硝基化有關。後續可再深入探討胚胎培養液中加入抗氧化劑是否可以改善胚胎品質並增進著床能力,進而提高試管嬰兒療程的懷孕成功率。
zh_TW
dc.description.abstractSubsequent to controlled ovarian stimulaiton and oocyte retrieval in assisted reproduction technology (ART) cycles, embryos are cultured in vitro of 2-5 days before transfer back into the uterus. During the process of embryonic development, some develop into good embryos, some features slow cleavage rates or arrest of development, while some appear cytoplasmic fragmentation. For the reason that the pregnancy rate in ART treatment is limited, many ART centers tend to transfer more number of embryos so as to enhance the pregnancy success rates. In Taiwan, since health insurance system does not pay for ART treatments, patients’ desire for pregnancy success is so strong that they consider multiple pregnancy acceptable. However, multiple gestation causes subsequent high risk pregnancy and prematurity, which may cost a great quantity of medical resources. Therefore, there is a need to establish a set of selection criteria for day 3 embryo transfer (D3ET) and blastocyst transfer (BT) cycles, so as to enable clinicians to provide infertile couples appropriate counseling.
This research analyzes the relevance of morphological parameters of embryo quality to the pregnancy success and multiple gestation in D3ET cycles or BT cycles. Among the common used criteria for embryo morphology, the embryo scores for the best three embryos (Top3) are the most crucial to predict the probability of pregnancy. Nevertheless, for women >35 years of age, it is female age that is the major factor for pregnancy outcome in D3ET cycles. After analysis of the BT program, the Top3 blastocyst scores can be utilized to decrease the number of embryos transferred in patients < 38 years of age. However, for women >38 years of age, it is female age acting the major factor for pregnancy outcome in BT cycles.
The above-mentioned analysis revealed that the effect of embryo quality on pregnancy outcome in ART cycles is prominent. The permanent arrest of embryo development is viewed as cellular senescence, which is connected with mitochondrial reactive oxygen species (ROS). Furthermore, cytoplasmic fragmentation of embryos is related to apoptosis, which is also connected with intracellular ROS levels. Therefore, the correlation between microenvironmental ROS levels and embryo quality were subsequently investigated. The results revealed that the ROS levels in spent culture media are correlated to embryo fragmentation degree. Furthermore, culture media ROS was inversely relevant to implantation potential of day 3 embryos.
The intracellular ROS levels of embryos are related to mitochondrial metabolism, which is regulated by nitric oxide (NO) in studies on somatic cells. Our previous reports indicated that, in patients with endometriosis, the expression of nitric oxide synthase increased in ectopic endometrial tissue. Furthermore, the elevated follicular NO levels are detrimental to embryo quality and may be related to failure of embryo implantation. Consequently, the in vitro development of mouse zygotes was utilized to elucidate the effect of microenvironmental NO on mitochondrial metabolism and blastocyst formation.
The results of mouse embryo experiment demonstrated that the apoptotic effect of NO on embryo development is closely related to protein S-nitrosylation within lipid-membrane rich organelles, such as mitochondria and endoplasmic reticulum. Totally abolishing NO production by NOS inhibitor is deleterious to embryo development and results in 2-cell block. The supplement of reduced form glutathione to NO-exposed embryos was able to maintain development competence, adequate proliferation of blastomeres, and ATP production in blastocysts.
In conclusion, the development potential is varied for the embryos in ART cycles. The best three embryos and the female age are both decisive to predict the pregnancy success and multiple gestation rates in D3ET and BT program, so that they could be utilized to help counseling for infertile couples and determine the number of transfer embryos. The fragmentation degree and implantation potential of embryos is correlated to the ROS levels in spent culture media. The mouse embryo experiment confirmed that NO is essential for embryo development. However, elevated microenvironmental NO levels may induce embryo degeneration and apoptosis. The addition of reduced glutathione is able to rescue the NO-exposed embryos. The effect of NO is intimately related to protein S-nitrosylation and mitochondrial activity. Further studies on the benefit of antioxidants in culture media on in vitro embryo development are deserved.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:59:10Z (GMT). No. of bitstreams: 1
ntu-101-D93421102-1.pdf: 4655858 bytes, checksum: c2e9a81a850491241b42f18b1952a58a (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents目 錄
口試委員會審定書……………………………………………………………… i
誌謝………………………………………………………………………………. ii
中文摘要………………………………………………………………………… i ii
英文摘要…………………………………………………………………………. vi
博士論文內容
第一章 緒論………………………………………………………………….. 1
第一節 試管嬰兒療程的發展……………………………………………….. 1
第二節 試管嬰兒療程的懷孕成功率及多胞胎妊娠……………………….. 7
第三節 試管嬰兒療程胚胎品質的重要性………………………………….. 8
第四節 卵巢濾泡液及輸卵管液中的自由基……………………………….. 10
第五節 微環境中氧化自由基對胚胎品質的影響…………………………. .20
第六節 微環境中一氧化氮對於胚胎體外培養的影響..…..………………...22
第七節 研究目的與研究假說…………………………………………………24
第二章 研究方法與材料………………………………………………………….26
第一節 體外培養第三天胚胎品質與懷孕率的關聯性………………………26
第二節 體外培養第五天胚胎品質與懷孕率的關聯性………………………27
第三節 微環境氧化自由基與體外培養第三天胚胎品質的關聯性…………29
第四節 微環境一氧化氮對鼠胚發育的作用機制……………………………32
第三章 結果………………………………………………………………………..38
第一節 第三天胚胎品質可用以估計懷孕成功率及多胞胎妊娠率 ………38
第二節 第五天胚胎品質可用以估計懷孕成功率及多胞胎妊娠率………....39
第三節 微環境氧化自由基升高會增加第三天胚胎碎片程度………………41
第四節 微環境一氧化氮經由巰基亞硝基化調控鼠胚發育…………………44
第四章 討論………………………………………………………………………..48
第一節 第三天胚胎品質可將年輕族群胚胎植入數目降低至三個以內……48
第二節 第五天胚胎品質可將年輕族群胚胎植入數目降低至兩個以內…..51
第三節 胚胎型態無法預估年長族群的懷孕成功率………………………..54
第四節 微環境氧化自由基升高會降低第三天胚胎著床能力……………..55
第五節 微環境一氧化氮經由粒線體功能調控鼠胚發育…………………..59
第六節 微環境一氧化氮經由蛋白質巰基亞硝基化調控鼠胚細胞凋亡…..62
第七節 抗氧化物質如穀胱甘肽可拯救鼠胚細胞免於一氧化氮傷害……..65
第五章 展望………………………………………………………………………..70
第一節 建立試管嬰兒療程胚胎植入數目的準則或臨床指引……………..70
第二節 從分子生物觀點發展新的胚胎篩選條件…………………………..73
第三節 自由基與精卵受精的關聯性………………………………………..76
第四節 試管嬰兒療程中婦女年齡的影響及自由基的關聯性……………..79
第五節 應用微環境自由基與抗氧化劑提升胚胎著床能力………………..81
第六章 論文英文簡述 (Summary)………………………………………………84
參考文獻…………………………………………………………………………....112
表1、表2等…………………………………………………………………………129
圖1、圖2等……………………………………………………………………….138
附錄:博士班修業期間所發表之相關論文………………………………………155
dc.language.isozh-TW
dc.subject氧化自由基zh_TW
dc.subject試管嬰兒療程zh_TW
dc.subject粒線體zh_TW
dc.subject細胞凋亡zh_TW
dc.subject巰基亞硝基化zh_TW
dc.subject胚胎品質zh_TW
dc.subject一氧化氮zh_TW
dc.subjectapoptosisen
dc.subjectmitochondriaen
dc.subjectreactive oxygen speciesen
dc.subjectnitric oxideen
dc.subjectS-nitrosylationen
dc.subjectassisted reproduction technology cyclesen
dc.subjectembryo qualityen
dc.title微環境自由基對試管嬰兒療程胚胎發育的作用zh_TW
dc.titleThe effect of microenvironmental free radicals on embryo development for assisted reproduction technology cyclesen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree博士
dc.contributor.oralexamcommittee何弘能(Hong-Nerng Ho),李超煌(Chau-Hwang Lee),黃建榮(Jiann-Loung Hwang),陳信孚(Hsin-Fu Chen)
dc.subject.keyword胚胎品質,氧化自由基,一氧化氮,巰基亞硝基化,細胞凋亡,粒線體,試管嬰兒療程,zh_TW
dc.subject.keywordembryo quality,reactive oxygen species,nitric oxide,S-nitrosylation,apoptosis,mitochondria,assisted reproduction technology cycles,en
dc.relation.page155
dc.rights.note有償授權
dc.date.accepted2012-07-17
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept臨床醫學研究所zh_TW
顯示於系所單位:臨床醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
4.55 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved