Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65683
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周綠蘋(Lu-Ping Chow)
dc.contributor.authorChu-Ling Wenen
dc.contributor.author溫竺陵zh_TW
dc.date.accessioned2021-06-16T23:58:48Z-
dc.date.available2013-09-19
dc.date.copyright2012-09-19
dc.date.issued2012
dc.date.submitted2012-07-17
dc.identifier.citation[1] Lababede O, Meziane M, Rice T. Seventh edition of the cancer staging manual and stage grouping of lung cancer: quick reference chart and diagrams. Chest. 2011;139:183-9.
[2] Travis WD, Brambilla E, Noguchi M, Nicholson AG, Geisinger K, Yatabe Y, et al. International association for the study of lung cancer/American Thoracic Society/European Respiratory Society: international multidisciplinary classification of lung adenocarcinoma: executive summary. Proceedings of the American Thoracic Society. 2011;8:381-5.
[3] Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA: a cancer journal for clinicians. 2010;60:277-300.
[4] Charloux A, Quoix E, Wolkove N, Small D, Pauli G, Kreisman H. The increasing incidence of lung adenocarcinoma: reality or artefact? A review of the epidemiology of lung adenocarcinoma. International journal of epidemiology. 1997;26:14-23.
[5] Liaw YP, Huang YC, Lien GW. Patterns of lung cancer mortality in 23 countries: application of the age-period-cohort model. BMC public health. 2005;5:22.
[6] Infante MV, Pedersen JH. Screening for lung cancer: are we there yet? Curr Opin Pulm Med. 2010;16:301-6.
[7] Herbst RS, Heymach JV, Lippman SM. Lung cancer. The New England journal of medicine. 2008;359:1367-80.
[8] Little AG, Gay EG, Gaspar LE, Stewart AK. National survey of non-small cell lung cancer in the United States: epidemiology, pathology and patterns of care. Lung Cancer. 2007;57:253-60.
[9] Lopes Pegna A, Picozzi G. Lung cancer screening update. Curr Opin Pulm Med. 2009;15:327-33.
[10] Midthun DE, Jett JR. Update on screening for lung cancer. Seminars in respiratory and critical care medicine. 2008;29:233-40.
[11] Mountain CF. Revisions in the International System for Staging Lung Cancer. Chest. 1997;111:1710-7.
[12] Dalton WS, Friend SH. Cancer biomarkers--an invitation to the table. Science. 2006;312:1165-8.
[13] Fung ET, Wright GL, Jr., Dalmasso EA. Proteomic strategies for biomarker identification: progress and challenges. Current opinion in molecular therapeutics. 2000;2:643-50.
[14] Sung HJ, Cho JY. Biomarkers for the lung cancer diagnosis and their advances in proteomics. BMB reports. 2008;41:615-25.
[15] Brambilla C, Fievet F, Jeanmart M, de Fraipont F, Lantuejoul S, Frappat V, et al. Early detection of lung cancer: role of biomarkers. The European respiratory journal Supplement. 2003;39:36s-44s.
[16] Valle RP, Chavany C, Zhukov TA, Jendoubi M. New approaches for biomarker discovery in lung cancer. Expert review of molecular diagnostics. 2003;3:55-67.
[17] Yang SY, Yang TY, Li YJ, Chen KC, Liao KM, Hsu KH, et al. EGFR exon 19 in-frame deletion and polymorphisms of DNA repair genes in never-smoking female lung adenocarcinoma patients. International journal of cancer Journal international du cancer. 2012.
[18] Chung KP, Wu SG, Wu JY, Yang JC, Yu CJ, Wei PF, et al. Clinical Outcomes in Non-Small Cell Lung Cancers Harboring Different Exon 19 Deletions in EGFR. Clinical cancer research : an official journal of the American Association for Cancer Research. 2012;18:3470-7.
[19] Tockman MS. Clinical detection of lung cancer progression markers. Journal of cellular biochemistry Supplement. 1996;25:177-84.
[20] Chen HY, Yu SL, Li KC, Yang PC. Biomarkers and transcriptome profiling of lung cancer. Respirology. 2012;17:620-6.
[21] Shoemaker DD, Schadt EE, Armour CD, He YD, Garrett-Engele P, McDonagh PD, et al. Experimental annotation of the human genome using microarray technology. Nature. 2001;409:922-7.
[22] Young GD, Winokur TS, Cerfolio RJ, Van Tine BA, Chow LT, Okoh V, et al. Differential expression and biodistribution of cytokeratin 18 and desmoplakins in non-small cell lung carcinoma subtypes. Lung Cancer. 2002;36:133-41.
[23] Hoehn GT, Suffredini AF. Proteomics. Critical care medicine. 2005;33:S444-8.
[24] Wisniewski JR. Mass spectrometry-based proteomics: principles, perspectives, and challenges. Archives of pathology & laboratory medicine. 2008;132:1566-9.
[25] Oliver SG, Winson MK, Kell DB, Baganz F. Systematic functional analysis of the yeast genome. Trends in biotechnology. 1998;16:373-8.
[26] Kell DB. Metabolomic biomarkers: search, discovery and validation. Expert review of molecular diagnostics. 2007;7:329-33.
[27] Kikuchi T, Carbone DP. Proteomics analysis in lung cancer: challenges and opportunities. Respirology. 2007;12:22-8.
[28] Xiao T, Ying W, Li L, Hu Z, Ma Y, Jiao L, et al. An approach to studying lung cancer-related proteins in human blood. Molecular & cellular proteomics : MCP. 2005;4:1480-6.
[29] Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of the National Academy of Sciences of the United States of America. 1979;76:4350-4.
[30] Gadkari DA, Shaikh BH. IgM antibody capture ELISA in the diagnosis of Japanese encephalitis, West Nile & dengue virus infections. The Indian journal of medical research. 1984;80:613-9.
[31] Lequin RM. Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Clinical chemistry. 2005;51:2415-8.
[32] Torane VP, Shastri JS. Comparison of ELISA and rapid screening tests for the diagnosis of HIV, Hepatitis B and Hepatitis C among healthy blood donors in a tertiary care hospital in Mumbai. Indian journal of medical microbiology. 2008;26:284-5.
[33] Paltiel AD, Weinstein MC, Kimmel AD, Seage GR, 3rd, Losina E, Zhang H, et al. Expanded screening for HIV in the United States--an analysis of cost-effectiveness. The New England journal of medicine. 2005;352:586-95.
[34] Donati V, Faviana P, Dell'omodarme M, Prati MC, Camacci T, De Ieso K, et al. Applications of tissue microarray technology in immunohistochemistry: a study on c-kit expression in small cell lung cancer. Human pathology. 2004;35:1347-52.
[35] Tan D, Deeb G, Wang J, Slocum HK, Winston J, Wiseman S, et al. HER-2/neu protein expression and gene alteration in stage I-IIIA non-small-cell lung cancer: a study of 140 cases using a combination of high throughput tissue microarray, immunohistochemistry, and fluorescent in situ hybridization. Diagnostic molecular pathology : the American journal of surgical pathology, part B. 2003;12:201-11.
[36] Gao WM, Kuick R, Orchekowski RP, Misek DE, Qiu J, Greenberg AK, et al. Distinctive serum protein profiles involving abundant proteins in lung cancer patients based upon antibody microarray analysis. BMC cancer. 2005;5:110.
[37] Zhong L, Hidalgo GE, Stromberg AJ, Khattar NH, Jett JR, Hirschowitz EA. Using protein microarray as a diagnostic assay for non-small cell lung cancer. American journal of respiratory and critical care medicine. 2005;172:1308-14.
[38] Chen EI, Hewel J, Felding-Habermann B, Yates JR, 3rd. Large scale protein profiling by combination of protein fractionation and multidimensional protein identification technology (MudPIT). Molecular & cellular proteomics : MCP. 2006;5:53-6.
[39] Washburn MP, Wolters D, Yates JR, 3rd. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nature biotechnology. 2001;19:242-7.
[40] Jessani N, Niessen S, Wei BQ, Nicolau M, Humphrey M, Ji Y, et al. A streamlined platform for high-content functional proteomics of primary human specimens. Nature methods. 2005;2:691-7.
[41] Tyan YC, Wu HY, Lai WW, Su WC, Liao PC. Proteomic profiling of human pleural effusion using two-dimensional nano liquid chromatography tandem mass spectrometry. Journal of proteome research. 2005;4:1274-86.
[42] Lange V, Picotti P, Domon B, Aebersold R. Selected reaction monitoring for quantitative proteomics: a tutorial. Molecular systems biology. 2008;4:222.
[43] Luna LG, Williams TL, Pirkle JL, Barr JR. Ultra performance liquid chromatography isotope dilution tandem mass spectrometry for the absolute quantification of proteins and peptides. Analytical chemistry. 2008;80:2688-93.
[44] Anderson L, Hunter CL. Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins. Molecular & cellular proteomics : MCP. 2006;5:573-88.
[45] Keshishian H, Addona T, Burgess M, Kuhn E, Carr SA. Quantitative, multiplexed assays for low abundance proteins in plasma by targeted mass spectrometry and stable isotope dilution. Molecular & cellular proteomics : MCP. 2007;6:2212-29.
[46] Anderson NL, Anderson NG, Haines LR, Hardie DB, Olafson RW, Pearson TW. Mass spectrometric quantitation of peptides and proteins using Stable Isotope Standards and Capture by Anti-Peptide Antibodies (SISCAPA). Journal of proteome research. 2004;3:235-44.
[47] Simpson RJ, Bernhard OK, Greening DW, Moritz RL. Proteomics-driven cancer biomarker discovery: looking to the future. Current opinion in chemical biology. 2008;12:72-7.
[48] Yang Z, Hancock WS, Chew TR, Bonilla L. A study of glycoproteins in human serum and plasma reference standards (HUPO) using multilectin affinity chromatography coupled with RPLC-MS/MS. Proteomics. 2005;5:3353-66.
[49] Ye B, Cramer DW, Skates SJ, Gygi SP, Pratomo V, Fu L, et al. Haptoglobin-alpha subunit as potential serum biomarker in ovarian cancer: identification and characterization using proteomic profiling and mass spectrometry. Clinical cancer research : an official journal of the American Association for Cancer Research. 2003;9:2904-11.
[50] Ahmed N, Barker G, Oliva KT, Hoffmann P, Riley C, Reeve S, et al. Proteomic-based identification of haptoglobin-1 precursor as a novel circulating biomarker of ovarian cancer. British journal of cancer. 2004;91:129-40.
[51] Kawakami T, Hoshida Y, Kanai F, Tanaka Y, Tateishi K, Ikenoue T, et al. Proteomic analysis of sera from hepatocellular carcinoma patients after radiofrequency ablation treatment. Proteomics. 2005;5:4287-95.
[52] Fujii K, Nakano T, Kanazawa M, Akimoto S, Hirano T, Kato H, et al. Clinical-scale high-throughput human plasma proteome analysis: lung adenocarcinoma. Proteomics. 2005;5:1150-9.
[53] Maciel CM, Junqueira M, Paschoal ME, Kawamura MT, Duarte RL, Carvalho Mda G, et al. Differential proteomic serum pattern of low molecular weight proteins expressed by adenocarcinoma lung cancer patients. Journal of experimental therapeutics & oncology. 2005;5:31-8.
[54] Seelenmeyer C, Wegehingel S, Lechner J, Nickel W. The cancer antigen CA125 represents a novel counter receptor for galectin-1. Journal of cell science. 2003;116:1305-18.
[55] Kraus MH, Fedi P, Starks V, Muraro R, Aaronson SA. Demonstration of ligand-dependent signaling by the erbB-3 tyrosine kinase and its constitutive activation in human breast tumor cells. Proceedings of the National Academy of Sciences of the United States of America. 1993;90:2900-4.
[56] Zhao J, Simeone DM, Heidt D, Anderson MA, Lubman DM. Comparative serum glycoproteomics using lectin selected sialic acid glycoproteins with mass spectrometric analysis: application to pancreatic cancer serum. Journal of proteome research. 2006;5:1792-802.
[57] Drake RR, Schwegler EE, Malik G, Diaz J, Block T, Mehta A, et al. Lectin capture strategies combined with mass spectrometry for the discovery of serum glycoprotein biomarkers. Molecular & cellular proteomics : MCP. 2006;5:1957-67.
[58] Drake PM, Cho W, Li B, Prakobphol A, Johansen E, Anderson NL, et al. Sweetening the pot: adding glycosylation to the biomarker discovery equation. Clinical chemistry. 2010;56:223-36.
[59] Kim YS, Yoo HS, Ko JH. Implication of aberrant glycosylation in cancer and use of lectin for cancer biomarker discovery. Protein and peptide letters. 2009;16:499-507.
[60] Stamey TA, Yang N, Hay AR, McNeal JE, Freiha FS, Redwine E. Prostate-specific antigen as a serum marker for adenocarcinoma of the prostate. The New England journal of medicine. 1987;317:909-16.
[61] Gadducci A, Cosio S, Carpi A, Nicolini A, Genazzani AR. Serum tumor markers in the management of ovarian, endometrial and cervical cancer. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2004;58:24-38.
[62] Fujino N, Haga Y, Sakamoto K, Egami H, Kimura M, Nishimura R, et al. Clinical evaluation of an immunoradiometric assay for CA15-3 antigen associated with human mammary carcinomas: comparison with carcinoembryonic antigen. Japanese journal of clinical oncology. 1986;16:335-46.
[63] Tan E, Gouvas N, Nicholls RJ, Ziprin P, Xynos E, Tekkis PP. Diagnostic precision of carcinoembryonic antigen in the detection of recurrence of colorectal cancer. Surgical oncology. 2009;18:15-24.
[64] Narimatsu H, Sawaki H, Kuno A, Kaji H, Ito H, Ikehara Y. A strategy for discovery of cancer glyco-biomarkers in serum using newly developed technologies for glycoproteomics. The FEBS journal. 2010;277:95-105.
[65] Kobayashi M, Morita T. Significant expression patterns of lewis X-related antigens as a prognostic predictor of low-stage renal cell carcinomas. Anticancer research. 2010;30:593-9.
[66] Bafna S, Kaur S, Batra SK. Membrane-bound mucins: the mechanistic basis for alterations in the growth and survival of cancer cells. Oncogene. 2010;29:2893-904.
[67] Zhao J, Patwa TH, Lubman DM, Simeone DM. Protein biomarkers in cancer: natural glycoprotein microarray approaches. Current opinion in molecular therapeutics. 2008;10:602-10.
[68] Ullman EF, Kirakossian H, Singh S, Wu ZP, Irvin BR, Pease JS, et al. Luminescent oxygen channeling immunoassay: measurement of particle binding kinetics by chemiluminescence. Proceedings of the National Academy of Sciences of the United States of America. 1994;91:5426-30.
[69] Cauchon E, Liu S, Percival MD, Rowland SE, Xu D, Binkert C, et al. Development of a homogeneous immunoassay for the detection of angiotensin I in plasma using AlphaLISA acceptor beads technology. Analytical biochemistry. 2009;388:134-9.
[70] Chang CF, Pan JF, Lin CN, Wu IL, Wong CH, Lin CH. Rapid characterization of sugar-binding specificity by in-solution proximity binding with photosensitizers. Glycobiology. 2011;21:895-902.
[71] Jung K, Cho W, Regnier FE. Glycoproteomics of plasma based on narrow selectivity lectin affinity chromatography. Journal of proteome research. 2009;8:643-50.
[72] Anderson L. Candidate-based proteomics in the search for biomarkers of cardiovascular disease. The Journal of physiology. 2005;563:23-60.
[73] Hanash SM, Pitteri SJ, Faca VM. Mining the plasma proteome for cancer biomarkers. Nature. 2008;452:571-9.
[74] Zhang Q, Faca V, Hanash S. Mining the plasma proteome for disease applications across seven logs of protein abundance. Journal of proteome research. 2011;10:46-50.
[75] Guzman NA, Blanc T, Phillips TM. Immunoaffinity capillary electrophoresis as a powerful strategy for the quantification of low-abundance biomarkers, drugs, and metabolites in biological matrices. Electrophoresis. 2008;29:3259-78.
[76] Zeng X, Hood BL, Sun M, Conrads TP, Day RS, Weissfeld JL, et al. Lung cancer serum biomarker discovery using glycoprotein capture and liquid chromatography mass spectrometry. Journal of proteome research. 2010;9:6440-9.
[77] Mehta A, Block TM. Fucosylated glycoproteins as markers of liver disease. Disease markers. 2008;25:259-65.
[78] Shiraki K, Takase K, Tameda Y, Hamada M, Kosaka Y, Nakano T. A clinical study of lectin-reactive alpha-fetoprotein as an early indicator of hepatocellular carcinoma in the follow-up of cirrhotic patients. Hepatology. 1995;22:802-7.
[79] Matsuda M, Asakawa M, Amemiya H, Fujii H. Lens culinaris agglutinin-reactive fraction of AFP is a useful prognostic biomarker for survival after repeat hepatic resection for HCC. Journal of gastroenterology and hepatology. 2011;26:731-8.
[80] Oka H, Saito A, Ito K, Kumada T, Satomura S, Kasugai H, et al. Multicenter prospective analysis of newly diagnosed hepatocellular carcinoma with respect to the percentage of Lens culinaris agglutinin-reactive alpha-fetoprotein. Journal of gastroenterology and hepatology. 2001;16:1378-83.
[81] Marrero JA, Romano PR, Nikolaeva O, Steel L, Mehta A, Fimmel CJ, et al. GP73, a resident Golgi glycoprotein, is a novel serum marker for hepatocellular carcinoma. Journal of hepatology. 2005;43:1007-12.
[82] Comunale MA, Lowman M, Long RE, Krakover J, Philip R, Seeholzer S, et al. Proteomic analysis of serum associated fucosylated glycoproteins in the development of primary hepatocellular carcinoma. Journal of proteome research. 2006;5:308-15.
[83] Comunale MA, Wang M, Hafner J, Krakover J, Rodemich L, Kopenhaver B, et al. Identification and development of fucosylated glycoproteins as biomarkers of primary hepatocellular carcinoma. Journal of proteome research. 2009;8:595-602.
[84] Tsai HY, Boonyapranai K, Sriyam S, Yu CJ, Wu SW, Khoo KH, et al. Glycoproteomics analysis to identify a glycoform on haptoglobin associated with lung cancer. Proteomics. 2011;11:2162-70.
[85] Matsumura K, Higashida K, Ishida H, Hata Y, Yamamoto K, Shigeta M, et al. Carbohydrate binding specificity of a fucose-specific lectin from Aspergillus oryzae: a novel probe for core fucose. The Journal of biological chemistry. 2007;282:15700-8.
[86] Debray H, Montreuil J. Aleuria aurantia agglutinin. A new isolation procedure and further study of its specificity towards various glycopeptides and oligosaccharides. Carbohydrate research. 1989;185:15-26.
[87] Ullman EF, Kirakossian H, Switchenko AC, Ishkanian J, Ericson M, Wartchow CA, et al. Luminescent oxygen channeling assay (LOCI): sensitive, broadly applicable homogeneous immunoassay method. Clinical chemistry. 1996;42:1518-26.
[88] Charalabopoulos K, Gogali A, Kostoula OK, Constantopoulos SH. Cadherin superfamily of adhesion molecules in primary lung cancer. Experimental oncology. 2004;26:256-60.
[89] Makrilia N, Kollias A, Manolopoulos L, Syrigos K. Cell adhesion molecules: role and clinical significance in cancer. Cancer investigation. 2009;27:1023-37.
[90] De Wever O, Derycke L, Hendrix A, De Meerleer G, Godeau F, Depypere H, et al. Soluble cadherins as cancer biomarkers. Clinical & experimental metastasis. 2007;24:685-97.
[91] Nawrocki-Raby B, Gilles C, Polette M, Bruyneel E, Laronze JY, Bonnet N, et al. Upregulation of MMPs by soluble E-cadherin in human lung tumor cells. International journal of cancer Journal international du cancer. 2003;105:790-5.
[92] Symowicz J, Adley BP, Gleason KJ, Johnson JJ, Ghosh S, Fishman DA, et al. Engagement of collagen-binding integrins promotes matrix metalloproteinase-9-dependent E-cadherin ectodomain shedding in ovarian carcinoma cells. Cancer research. 2007;67:2030-9.
[93] Zhao Y, Sato Y, Isaji T, Fukuda T, Matsumoto A, Miyoshi E, et al. Branched N-glycans regulate the biological functions of integrins and cadherins. The FEBS journal. 2008;275:1939-48.
[94] Liwosz A, Lei T, Kukuruzinska MA. N-glycosylation affects the molecular organization and stability of E-cadherin junctions. The Journal of biological chemistry. 2006;281:23138-49.
[95] Stanczak A, Stec R, Bodnar L, Olszewski W, Cichowicz M, Kozlowski W, et al. Prognostic significance of Wnt-1, beta-catenin and E-cadherin expression in advanced colorectal carcinoma. Pathology oncology research : POR. 2011;17:955-63.
[96] Gornik O, Lauc G. Enzyme linked lectin assay (ELLA) for direct analysis of transferrin sialylation in serum samples. Clinical biochemistry. 2007;40:718-23.
[97] Olewicz-Gawlik A, Korczowska-Lacka I, Lacki JK, Klama K, Hrycaj P. Fucosylation of serum alpha1-acid glycoprotein in rheumatoid arthritis patients treated with infliximab. Clinical rheumatology. 2007;26:1679-84.
[98] Matsumoto H, Shinzaki S, Narisada M, Kawamoto S, Kuwamoto K, Moriwaki K, et al. Clinical application of a lectin-antibody ELISA to measure fucosylated haptoglobin in sera of patients with pancreatic cancer. Clinical chemistry and laboratory medicine : CCLM / FESCC. 2010;48:505-12.
[99] Kinoshita N, Suzuki S, Matsuda Y, Taniguchi N. Alpha-fetoprotein antibody-lectin enzyme immunoassay to characterize sugar chains for the study of liver diseases. Clinica chimica acta; international journal of clinical chemistry. 1989;179:143-51.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65683-
dc.description.abstract肺癌是全世界癌症致死的首要原因。其中非小細胞肺癌因個體差異性極大,不論在預後或個人對治療的反應都有顯著差異。因此,若能判別病人是否屬於轉移的高風險族群或能評估其手術後復發率,將對療程有更好的掌控。近年來已有許多研究及越來越多的證據表明,醣基化參與在許多生物反應過程中,當中包含癌症病程轉化和癌細胞轉移等重要機轉。本研究的特定目標是建立一個有效的平台,同時篩選和鑑定肺癌轉移標誌物的血清醣蛋白。首先以刀豆素A親和性層析法純化出肺腺癌患者的血清中的N-醣基化修飾蛋白。得到的醣蛋白經由二維螢光差異電泳法分離再結合奈流液相層析質譜儀分析,最後從數據庫檢索鑑定出蛋白身分。我們鑑定到一些表現量有差異的癌症相關醣蛋白,包括α-1-抗胰蛋白酶,補體C3c,結合球蛋白,上皮鈣粘蛋白等。經由西方墨點法和橙黃網孢盤菌 (Aleuria aurantia)凝集素染色法驗證後,發現包括上皮鈣粘蛋白在內的這些醣蛋白,其核心岩藻醣化的現象隨著肺癌病程進展而增加。我們接著檢測154例肺腺癌病人血清的上皮鈣粘蛋白的岩藻醣化指數(fucosylation index, FI),岩藻醣化指數較低的患者(FI≤ 1.5),其存活率高於岩藻醣化指數較高的患者(FI>1.5)。同時我們建立了一個AlphaLISA檢測平台,量測上皮鈣粘蛋白的岩藻醣化指數。目前的研究結果顯示,血清中上皮鈣粘蛋白的岩藻醣化指數可能是一個有潛力的轉移性肺腺癌的預後指標。除此之外,AlphaLISA檢測平台的發展也已經可以達到許多其他疾病診斷上的高通量篩選需求。zh_TW
dc.description.abstractLung cancer is the leading cause of cancer-associated deaths worldwide. Non-small cell lung cancer is a heterogeneous condition with significant variability in prognosis and in individual response to treatment. Thus, the identification of patients with a high risk of metastasis or relapse after surgery would allow better management. There is increasing evidence that glycosylation plays a significant role in biological processes including oncogenic transformation and metastasis. The specific aim of our study is to set up a platform to screen and identify serum glycoproteins as metastasis biomarkers of lung cancer. Concanavalin A affinity chromatography was used to enrich N-linked glycoproteins from pooled serum of lung adenocarcinoma patients. The captured glycoproteins were separated with 2-D DIGE combined with nano-LC-MS/MS and identified by database searching. Some differentially expressed cancer-related glycoproteins, such as α-1-antitrypsin, complement C3c, haptoglobin, and E-cadherin, were identified. These glycoproteins were evaluated by Western blotting and Aleuria aurantia lectin staining and several, including E-cadherin, showed increased core-fucosylation during lung cancer progression. We then measured the fucosylation index (FI) of E-cadherin in 154 lung adenocarcinoma patients. The survival rate of patient with lower fucosylation index (FI≤1.5) of e-cadherin is higher than that with higher fucosylation index (FI>1.5). In addition, a homogeneous proximity-based AlphaLISA assay to measure the FI of E-cadherin was established. The present study indicates that the FI of E-cadherin could be a potential prognostic marker of metastatic lung adenocarcinoma. Furthermore, the AlphaLISA assay is ready to meet the high throughput screening requirements for the diagnosis of many other diseases.en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:58:48Z (GMT). No. of bitstreams: 1
ntu-101-F91442007-1.pdf: 2794814 bytes, checksum: 278afb5a2136f00fc7f42404d51e0f04 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
Abbreviation v
Table of Contents viii
ChapterⅠ- Overview and Rationale 1
1.1 Lung cancer: characteristics and diagnosis in the clinic 2
1.2 Lung cancer biomarker discovery using various technologies 3
1.3 Identification of serum glycoprotein biomarkers from human lung adenocarcinoma patients 11
List of Tables 12
Table 1-1. Lung cancer is the leading cause of cancer death in Taiwan 12
Table 1-2. Biomarkers of lung cancer 13
ChapterⅡ-Quantification of serum core-fucosylated E-cadherin as a metastatic lung adenocarcinoma biomarker 14
2.1 Introduction 15
2.2 Experimental Procedures 18
2.3 Results 26
2.4 Discussion 31
Chapter III – Conclusion and perspectives 34
Conclusion and perspectives 35
List of Figures 37
Figure 2-1. AlphaLISA Assay Principle 37
Figure 2-2. Schematic diagram of the glycoproteomic analysis of serum N-glycosylation pattern changes in lung adenocarcinoma. 39
Figure 2-3. Enrichment of glycoproteins by lectin affinity chromatography. 40
Figure 2-4. Differentially expressed glycoproteins. 41
Figure 2-5. Silver-stained 2-DE profiles of the ConA affinity column eluate of pooled serum samples from lung adenocarcinoma patients and normal controls. 42
Figure 2-6. MS/MS spectrum of the corresponding N-glycosylated peptides. 44
Figure 2-7. Screening of fucosylated glycoproteins in the pooled serum samples from normal controls (N) and serum samples from 20 individual patients. 45
Figure 2-8. Survival rates of groups of lung adenocarcinoma patients with a fucosylated index (FI) of E-cadherin > 1.5 or ≧ 1.5 compared by the Kaplan-Meier method. 46
Figure 2-9. The fucosylated index of E-cadherin in patients with early or late stage lung adenocarcinoma was measured by the equation described in experimental procedures. 47
Figure 2-10. AlphaLISA assay. 48
Figure 2-11. Comparison of the FI for E-cadherin in lung cancer sera using the AlphaLISA method or the Western blot and lectin staining method. 50
Figure 2-12. Molecular functions related to non-small cell lung cancer associated with E-cadherin. 51
List of Tables 52
Table 2-1. Clinical features of the patients with lung adenocarcinoma. 52
Table 2-2. Identification of differentially expressed proteins captured by Con A. 53
Table 2-3 N-glycosylation sites of glycoproteins identified by LC-MS/MS 54
Table 2-4. Significance of serum E-cadherin fucosylation in NSCLC patients receiving surgical resection. 55
References 56
Appendix 67
Supplemental Figure S1. The FI index measured ratio on blots is a linear assay. 67
List of instruments 68
dc.language.isoen
dc.subjectAlphaLISAzh_TW
dc.subject血清醣蛋白體zh_TW
dc.subject肺腺癌zh_TW
dc.subject凝集素親和性管柱zh_TW
dc.subject上皮鈣粘蛋白zh_TW
dc.subject二維螢光差異電泳法zh_TW
dc.subjectSerum glycoproteomicsen
dc.subjectAlphaLISAen
dc.subjectE-cadherinen
dc.subjectLectin affinity columnen
dc.subjectLung adenocarcinomaen
dc.subject2D-DIGEen
dc.title發展AlphaLISA分析平台定量血清岩藻醣化上皮鈣粘蛋白作為肺腺癌轉移之生物標誌zh_TW
dc.titleDevelopment of an AlphaLISA assay to quantify serum fucosylated E-cadherin as a metastatic lung adenocarcinoma biomarkeren
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree博士
dc.contributor.oralexamcommittee楊泮池(Pan-Chyr Yang),陳冠宇(Kuan-Yu Chen),邱繼輝(Kay-Hooi Khoo),黃敏銓(Min-Chuan Huang)
dc.subject.keyword二維螢光差異電泳法,AlphaLISA,上皮鈣粘蛋白,凝集素親和性管柱,肺腺癌,血清醣蛋白體,zh_TW
dc.subject.keyword2D-DIGE,AlphaLISA,E-cadherin,Lectin affinity column,Lung adenocarcinoma,Serum glycoproteomics,en
dc.relation.page68
dc.rights.note有償授權
dc.date.accepted2012-07-17
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
2.73 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved