Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65668
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳榮凱
dc.contributor.authorHsin-Ku Chenen
dc.contributor.author陳星谷zh_TW
dc.date.accessioned2021-06-16T23:57:29Z-
dc.date.available2012-08-15
dc.date.copyright2012-08-15
dc.date.issued2012
dc.date.submitted2012-07-17
dc.identifier.citation[B] A.Beaville, Complex Algebraic Surfaces, Astérisque, no. 54, 1978.
[B2] A. Beauville, L'inégalité pg ≥ 2q−4 pour les surfaces de type général, Bull. Soc. math. France, 110, 1982, p.343-346.
[BCG] I. Bauer, F. Catanese, F. Grunewald, The classification of surfaces with pg = q = 0 isogenous to a product of curves, e-print math.AG/0610267 (2006) (2002), no.7, 2631-2638.
[BL] C. Birkenhake, H. Lange, Complex Abelian Varieties, Grundlehreb der mathematischen Wissenschaften 302, Springer-Verlag Berlin Heidelberg 1992.
[C] F. Catanese, Fibred surfaces, varieties isogenous to a product and related moduli spaces, Amer. J. Math. 122, (2000), 1-44.
[CH] J. A. Chen and C. D. Hacon, An example of a surface of general type with pg = q = 2 and K2 X = 5 Pacific. J. Math. 223 no. 2, (2006), 219-228.
[CP] G. Carnovale, F. Polizzi, The classification of surfaces of general type with pg = q = 1 isogenous to a product, e-print arXiv: 0704.0446, 2007, Adv. Geom., in press.
[D] O. Debarre, Inégalités numériques pour les surfaces de type général, Bull. Soc.Math. de France, vol. 110 (1982), 319-346.
[HM] D. W. Hahn, R. Miranda, Quadruple covers of algebraic varieties, J. Algebraic Geom., 8 (1999), 1-30.
[HP] C. D. Hacon and R. Pardini, Surfaces with pg = q = 3, Trans. Amer. Math. Soc.354
[M] R. Miranda, Triple covers in algebraic geometry. Amer. J. Math. 107, no. 5, 1123-1158
[Mo] S. Mori, Classification of higher-dimensional varieties, Algebraic geometry,Proc. Symp. Pure Math. 46, Part 1 Amer. Math. Soc. (1987) pp. 165-171.
[Mu] S. Mukai, Duality between D(X) and D( ˆX ) with its application to Picard
sheaves, Nagoya Math. Juor 81,(1981) 153-175.
[S] T. Szamuely, Galois groups and fundamental groups, Cambridge studies in advanced mathematics, vol. 117, Cambridge University Press, 2009.
[P] M. Penegini, The classification of isotrivially fibred surfaces with pg = q = 2,arXiv: 0904.1352.
[Y] S. T. Yau, Calabis conjecture and some new results in algebraic geometry, Proc.Nat. Acad. Sci. USA 74 (1977), 1798-1799
[Z] F. Zucconi, Surfaces with pg = q = 2 and an irrational pencil, Canad. J. Math.Vol. 55, (2003), 649-672.26
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65668-
dc.description.abstract這篇文章主要是在探討代數曲面的分類理論。特別地我們考慮虧格數與非正則數均為二的一般形曲面,到目前為止,對於這一種曲面的分類還是不完全的。我所做的事是在於真正構造出實際的例子。在這篇文章中我們考慮兩種構造曲面的方法。第一種做法是考慮與兩條曲線乘積同源的曲面。這一類的曲面有一些好的性質,所以在討論上是相對容易的。佩納吉尼做出了一張列表,把這類的曲面完全分類完畢了。第二種做法是去考慮在阿貝爾的曲面上的有限覆蓋。陳榮凱與黑肯利用阿貝爾曲面上的三次覆蓋造出了一個例子。我依循他們的做法,利用阿貝爾曲面上的四次覆蓋造出了另外一個這樣的曲面。zh_TW
dc.description.abstractThis article is about the classification of algebraic surfaces. We focus on the surfaces of general type with pg = q = 2. This kind of surfaces are not completely classified yet.We construct several examples in this article.In this paper I discuss two methods for constructing a surface of general type with pg = q = 2. The first one is by considering a surface which is isogenus to a product of curves. This kind of surfaces is rather easy to work out. Penegini gives a complete list of such surfaces. The other way to construct a surface with given invariant is to consider a finite covering of an abelain surface. Chen and Hacon construct a surface with K2 = 5
by considering a triple cover of an abelian surface. Using the similar method, I construct a quadruple covering over an abelian surface to get a surface with K2 = 6.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:57:29Z (GMT). No. of bitstreams: 1
ntu-101-R99221005-1.pdf: 318653 bytes, checksum: db54b4534fb2ee6f3bda8124972f67e7 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員審定書i
誌謝ii
中文摘要iii
英文摘要iv
1 Introduction 1
2 Techniques 2
2.1 Some facts about surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Quotient construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Covering construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3 Main theorems 12
3.1 Surfaces constructed by quotient construction . . . . . . . . . . . . . . . 12
3.2 Surfaces constructed by covering construction . . . . . . . . . . . . . . . 16
dc.language.isoen
dc.subject一般形曲面zh_TW
dc.subject曲線乘積同源zh_TW
dc.subject阿貝爾曲面zh_TW
dc.subjectisogenus to producten
dc.subjectsurface of general typeen
dc.subjectabelian surfaceen
dc.title虧格數和非正則數均為二的一般形曲面的研究zh_TW
dc.titleSurfaces of general type with p_g=q=2en
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡炎龍,江謝宏任
dc.subject.keyword一般形曲面,曲線乘積同源,阿貝爾曲面,zh_TW
dc.subject.keywordsurface of general type,isogenus to product,abelian surface,en
dc.relation.page26
dc.rights.note有償授權
dc.date.accepted2012-07-18
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
311.18 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved