Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65634
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor葉丙成
dc.contributor.authorLing-San Mengen
dc.contributor.author孟令三zh_TW
dc.date.accessioned2021-06-16T23:55:14Z-
dc.date.available2017-07-19
dc.date.copyright2012-07-19
dc.date.issued2012
dc.date.submitted2012-07-19
dc.identifier.citation[1] I. F. Akyildiz, F. Brunetti, and C. Blazquez, “Nanonetworks: A new communication paradigm,” Computer Networks (Elsevier) Journal, vol. 52, pp. 2260–2279, Aug. 2008.
[2] I. F. Akyildiz, J. Jornet, and M. Pierobon, “Nanonetworks: A new frontier in communications,” Communications of the ACM, vol. 54, no. 11, pp. 84–89, Nov. 2011.
[3] L. P. Gine and I. F. Akyildiz, “Molecular communication options for long range nanonetworks,” Computer Networks, vol. 53, no. 16, pp. 2753–2766, Nov. 2009.
[4] T. Nakano, T. Suda, M. Moore, R. Egashira, A. Enomoto, and K. Arima, “Molecular communication for nanomachines using intercellular calcium signalling,” in Proc. 5th IEEE Conference on Nanotechnology, vol. 2, July 2005, pp. 478–481.
[5] D. Clapham, “Calcium signaling,” Cell, vol. 131, pp. 1047–1058, Dec. 2004.
[6] P. Ohashi, “T-cell signaling and autoimmunity: Molecular mechanisms of disease,” Nature Review Immunology, vol. 2, pp. 427–438, June 2002.
[7] H. Kitano, “Computational systems biology,” Nature, vol. 420, pp. 206–210, Nov. 2002.
[8] M. Pierobon and I. F. Akyildiz, “A physical end-to-end model for molecular communication in nanonetworks,” IEEE J. Sel. Areas Commun., vol. 28, no. 4, pp. 602–611, May 2010.
[9] ——, “Diffusion-based noise analysis for molecular communication in nanonetworks,” IEEE Trans. Signal Processing, vol. 59, pp. 2532–2547, June 2011.
[10] ——, “Noise analysis in ligand-binding reception for molecular communication in nanonetworks,” IEEE Trans. Signal Processing, vol. 59, pp. 4168–4182, Sept. 2011.
[11] B. Atakan and O. Akan, “An information theoretical approach for molecular communication,” Bionetics 2007. 2nd, pp. 33–40, Dec. 2007.
[12] B. Atakan and O. B. Akan, “On molecular multiple-access, broadcast, and relay channels in nanonetworks,” in Proc. ICST/ACM Conference BIONETICS, Nov. 2008.
[13] R. Weiss, S. Basu, S. Hooshangi, A. Kalmbach, D. Karig, R. Mehreja, and I. Netravali, “Genetic circuit building blocks for cellular computations, communications, and signal processing,” Natural Computing, vol. 2, pp. 47–84, Mar. 2003.
[14] R. Weiss and T. Knight, “Engineered communications for microbial robotics,” in Proc. 6th International Meeting on DNA Based Computers: DNA Computing, 2000, pp. 1–16.
[15] T. Nakano, T. Suda, T. Koujin, T. Haraguchi, and Y. Hiraoka, “Molecular communication through gap junction channels: System design, experiments and modeling,” in Proc. 2nd International Conference on Bio-Inspired Models of Network, Information, and Computing Systems, Dec. 2007, pp. 139–146.
[16] B. Atakan and O. Akan, “On channel capacity and error compensation in molecular communication,” Trans. on Computational Systems Biology X, pp. 59–80, 2008.
[17] M. U. Mahfuz, D. Makrakis, and H. T. Mouftah, “On the characterization of binary concentration-encoded molecular communication in nanonetworks,” Nano Communication Networks Journal, Elsevier Science, vol. 1, no. 4, pp. 289–300, Dec. 2010.
[18] D. Arifler, “Capacity analysis of a diffusion-based short-range molecular nano-communication channel,” Computer Networks, vol. 55, pp. 1426–1434, Dec. 2010.
[19] M. U. Mahfuz, D. Makrakis, and H. T. Mouftah, “Characterization of intersymbol interference in concentration-encoded unicast molecular communication,” in Proc. 24th Canadian Conference on Electrical and Computer Engineering (CCECE), May 2011, pp. 164–168.
[20] M. Mahfuz, D. Makrakis, and H. Mouftah, “On the detection of binary concentration-encoded unicast molecular communication in nanonetworks,” in Proc. 4th International Conference on Bio-inspired Systems and Signal Processing (BIOSIGNALS-2011), Jan. 2011.
[21] M.-J. Moore, T. Suda, and K. Oiwa, “Molecular communication: Modeling noise effects on information rate,” IEEE Trans. on NanoBioscience, vol. 8, no. 2, pp. 169–180, June 2009.
[22] M. Kuran, H. Yilmaz, T. Tugcu, and I. Akyildiz, “Modulation techniques for communication via diffusion in nanonetworks,” in Proc. IEEE ICC’11, June 2011, pp. 1–5.
[23] A. Einolghozati, M. Sardari, A. Beirami, and F. Fekri, “Capacity of discrete molecular diffusion channels,” in Proc. IEEE Information Theory Proceedings (ISIT), Aug. 2011, pp. 723–727.
[24] N. Garralda, I. Llatser, A. Cabellos-Aparicio, and M. Pierobon, “Simulation- based evaluation of the diffusion-based physical channel in molecular nanonetworks,” in Proc. IEEE Computer Communications Workshops (INFOCOM WK- SHPS), Apr. 2011, pp. 443–448.
[25] I. Llatser, I. Pascual, N. Garralda, A. Cabellos-Aparicio, M. Pierobon, E. Alarcon, and J. Sole-Pareta, “Exploring the physical channel of diffusion-based molecular communication by simulation,” in Proc. of IEEE GLOBECOM’11, Dec. 2011, pp. 1–5.
[26] M. Mahfuz, D. Makrakis, and H. Mouftah, “On the characteristics of concentration-encoded multi-level amplitude modulated unicast molecular communication,” in Electrical and Computer Engineering (CCECE), 2011 24th Canadian Conference on, May 2011, pp. 312–316.
[27] A. Tseng, K. Chen, C. Chen, and K. Ma, “Electron beam lithography in nanoscale fabrication: recent development,” IEEE Trans. on Electronics Pack- aging Manufacturing, vol. 26, no. 2, pp. 141–149, Apr. 2003.
[28] M. Moore, A. Enomoto, T. Nakano, R. Egashira, T. Suda, A. Kayasuga, H. Kojima, H. Sakakibara, and K. Oiwa, “A design of a molecular communication system for nanomachines using molecular motors,” in Pervasive Computing and Communications Workshops, 2006. PerCom Workshops 2006. Fourth Annual IEEE International Conference on, Mar. 2006.
[29] Y.-P. Hsieh, P.-J. Shih, Y.-C. Lee, P.-C. Yeh, and K.-C. Chen, “An asynchronous communication scheme for molecular communication,” to appear in 2nd IEEE International Workshop on Molecular and Nanoscale Communications (MONACom), June 2012.
[30] I. Llatser, E. Alarcon, and M. Pierobon, “Diffusion-based channel characterization in molecular nanonetworks,” in Proc. IEEE Computer Communications Workshops (INFOCOM WKSHPS), Apr. 2011, pp. 467–472.
[31] A. Guney, B. Atakan, and O. Akan, “Mobile ad hoc nanonetworks with collision-based molecular communication,” IEEE Trans. Mobile Computing, vol. 11, no. 3, pp. 353–366, Mar. 2012.
[32] S. M. Ross, Introduction to Probability Models, 9th ed. Academic Press, 2006.
[33] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed. John Wiley and Sons, Inc., 2006.
[34] T. Gabriele, “Information criteria for threshold determination (corresp.),” IEEE Trans. Inform. Theory, vol. 12, no. 4, pp. 484–486, Oct. 1966.
[35] M. Barkat, Signal Detection and Estimation, 2nd ed. Artech House, 2005.
[36] A. Einstein, Investigations of the Theory of Brownian Movement. Dover, 1956.
[37] Y. H. Wang, “On the number of successes in independent trials,” Statistica Sinica, vol. 3, no. 2, pp. 295–312, 1993.
[38] H. V. Poor, An Introduction to Signal Detection and Estimation, 2nd ed. Springer, Mar. 1994.
[39] D. H. Johnson, “Information theory and neural information processing,” IEEE Trans. Inform. Theory, vol. 56, no. 2, pp. 653–666, Feb. 2010.
[40] X. Chen and K. Chugg, “Reduced-state soft-input/soft-output algorithms for complexity reduction in iterative and non-iterative data detection,” in Proc. IEEE ICC’00, vol. 1, 2000, pp. 6–10.
[41] J. Philibert, “One and a half century of diffusion: Fick, Einstein, before and beyond,” Diffusion Fundamentals, vol. 4, pp. 6.1–6.19, 2006.
[42] W. H. Bossert and E. Wilson, “The analysis of olfactory communication among animals,” Journal of Theoretical Biology, vol. 5, no. 3, pp. 443–469, 1963.
[43] D. Middleton, An Introduction to Statistical Communication Theory. New York: McGraw-Hill, 1960.
[44] R. B. Ash, Probability and Measure Theory, 2nd ed. Academic Press, Dec. 1999.
[45] G. Colavolpe, G. Ferrari, and R. Raheli, “Reduced-state BCJR-type algorithms,” IEEE J. Sel. Areas Commun., vol. 19, no. 5, pp. 848–859, May 2001.
[46] P.-C. Yeh, C. han Lee, K.-C. Chen, Y.-C. Lee, L.-S. Meng, P.-J. Shih, P.-Y. Ko, and W.-A. Lin, “A new frontier of wireless communications theory: Diffusion- based molecular communications,” submitted to IEEE Wireless Commun. Mag. Special Issue: Wireless Communications at the Nanoscale, Oct. 2012.
[47] J. Proakis, Digital Communications, 4th ed. McGraw-Hill, 2000.
[48] Z. Chair and P. Varshney, “Optimal data fusion in multiple sensor detection systems,” IEEE Trans. Aerospace and Electronic Systems, vol. AES-22, no. 1, pp. 98–101, Jan. 1986.
[49] A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperation diversity - part I: System description,” IEEE Trans. Commun., vol. 51, pp. 1927–1938, Nov. 2003.
[50] ——, “User cooperation diversity - part II: Implementation aspects and performance analysis,” IEEE Trans. Commun., vol. 51, pp. 1939–1948, Nov. 2003.
[51] J. N. Laneman, D. N. C. Tse, and G. W. Wornell, “Cooperative diversity in wireless networks: Efficient protocols and outage behavior,” IEEE Trans. Inform. Theory, vol. 50, no. 12, pp. 3062–3080, Dec. 2004.
[52] T. E. Hunter and A. Nosratinia, “Diversity through coded cooperation,” IEEE Trans. Wireless Commun., vol. 5, no. 2, pp. 283–289, Feb. 2006.
[53] Q. Zhang, J. Zhang, C. Shao, Y. Wang, P. Zhang, and R. Hu, “Power allocation for regenerative relay channel with Rayleigh fading,” in Proc. IEEE VTC’04, vol. 2, May 2004, pp. 1167–1171.
[54] L. Lai, K. Liu, and H. E. Gamal, “The three-node wireless network: Achievable rates and cooperation strategies,” IEEE Trans. Inform. Theory, vol. 52, no. 3, pp. 805–828, Mar. 2006.
[55] Y.-W. Hong, W.-J. Huang, F.-H. Chiu, and C.-C. J. Kuo, “Cooperative communications in resource-constrained wireless networks,” IEEE Signal Processing Mag., vol. 24, pp. 47–57, May 2007.
[56] L. Jiu, P. Parag, and J.-F. Chamberland, “Quality of service analysis for wireless user-cooperation networks,” IEEE Trans. Inform. Theory, vol. 53, pp. 3833– 3842, Oct. 2007.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65634-
dc.description.abstract作為奈米裝置間最有前途的通訊機制,分子通訊在通訊理論界與研究社群間都獲得極大關注。基於分子擴散之通訊指的是分子單純地依靠粒子擴散的理論來到達目的地。
此論文中,我們定義了兩種不同的數位分子通訊:同調及非同調分子通訊。對這兩種分子通訊,基於分子擴散的數位通訊系統之基礎架構設計均被提出。通道之記憶效應在分子通訊中為一決定性因素,而目前出版文獻卻都疏於考慮。本論文中提出之架構首先以分析之方式將任意量級的通道記憶納入考量。基於消息理論,可將互消息最大化之接收端偵測方案被提出。一低複雜度且不需前置機率訊息之接收端偵測方案亦被提出。數值結果顯示,本論文中所提出之低複雜度接收端偵測方案可同時確保兩種數位分子通訊系統在無限大的通道記憶環境下,系統亦可穩定運作。藉由延長位元區間長度,每一次通道使用達到一個位元傳輸之最大通道容量最終可被達成。
在所提出的數位分子通訊架構下,為了對抗多使用者干擾之效應,數種適用於多輸入多輸出通訊系統之多樣性技巧均被提出。傳送端多樣性、選擇結合、最大比例結合、決策融合、空間多工等適用於多輸入多輸出分子通訊系統之通訊技巧均被提出並分析以求得錯誤機率。透過虛擬多輸入多輸出通訊技巧來達到合作多樣性之概念亦被提出並探討其於分子通訊上之應用。數值結果顯示所提出之多樣性技巧可在多使用者干擾環境下顯著降低錯誤機率。若傳送端可獲得通道狀態訊息並適當分配分子數目,效能可獲得更進一步增進。
zh_TW
dc.description.abstractMolecular communication, being one of the most promising communication mechanisms among nanoscale devices, has attracted considerable interests from the communication theorists and research communities. Diffusion-based molecular communication refers to the situation where molecules reach the destination relying solely on the laws of molecular diffusion.
In this thesis, two different families of digital molecular communication are identified, namely coherent and non-coherent digital molecular communication. For each family of molecular communication, the fundamental framework for designing a digital communication system based on molecular diffusion is proposed. Such a framework is the first to analytically take into account the effect of channel memory with arbitrary order, which is a key property of the diffusion channel that most of the existing literature fails to capture. Based on an information-theoretic approach, an information-optimal receiver detection scheme that can achieve maximum mutual information is proposed. A low-complexity receiver detection scheme without the knowledge of a priori information is also proposed. Results show that the low-complexity receiver detection scheme guarantees both families of molecular communication to be operated without failure in the case of infinite channel memory. A channel capacity of 1 bit per channel utilization can be ultimately achieved by extending the duration of the signaling interval.
Under the proposed framework of digital molecular communication systems, various diversity techniques for Multi-Input Multi-Output (MIMO) transmissions are proposed to combat the effect of Multi-User Interference (MUI). The transmit diversity, selection combining, Maximum Ratio Combining (MRC), decision fusion, and Spatial Multiplexing (SM) for MIMO molecular communication are formulated and analyzed to obtain the error probability. The notion of virtual MIMO to achieve cooperative diversity is also investigated and proposed to be applied to molecular communication. Numerical results show the proposed diversity techniques can significantly lower the error probability in the presence of MUI. Further performance improvement can be obtained by properly allocating the molecules among the transmission nodes if the Channel State Information (CSI) is available at the transmitting end.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:55:14Z (GMT). No. of bitstreams: 1
ntu-101-F95942117-1.pdf: 13134488 bytes, checksum: a81a0b3328e8e142fd20f51b4f148693 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsVERIFICATION LETTER .......................... ii
ACKNOWLEDGEMENT .......................... iii
CHINESE ABSTRACT ............................ iv
ENGLISH ABSTRACT ............................ v
LIST OF FIGURES............................... x
CHAPTER
I.Introduction .............................. 1
II.Background............................... 5
2.1 Current Development ...................... 5
2.2 Classification of Molecular Communication . . . . . . . . . . 7
2.2.1 Homogeneity...................... 7
2.2.2 Coherent and Non-Coherent Molecular Communication 7
2.3 Design for Coherent Molecular Communication Systems . . . 8
2.4 Design for Non-Coherent Molecular Communication Systems 9
2.5 MIMO Molecular Communication in the Presence of MUI . . 10
2.6 Conclusions............................ 11
III. Design for Coherent Molecular Communication Systems . . 12
3.1 Introduction ........................... 12
3.2 Binary Digital Signaling with One Molecule . . . . . . . . . . 15
3.2.1 Model Description................... 15
3.2.2 Receiver Design .................... 17
3.3 Multi-Amplitude Digital Signaling ............... 24
3.3.1 Signaling Scheme ................... 24
3.3.2 Receiver Design .................... 25
3.4 Numerical Results ........................ 26
3.4.1 Binary Digital Signaling with One Molecule . . . . . 27
3.4.2 Multi-Amplitude Digital Signaling . . . . . . . . . . 32
3.5 Conclusions............................ 33
IV. Design for Non-Coherent Molecular Communication Systems 35
4.1 Introduction ........................... 35
4.2 Model Description ........................ 38
4.3 Concentration Processor..................... 42
4.3.1 Sampling Processing.................. 42
4.3.2 Correlation Processing ................ 43
4.3.3 ISI Cancellation Processing.............. 45
4.4 One-shot Detection ....................... 47
4.4.1 Perfect A Priori Information ............. 48
4.4.2 A Priori Information Unknown . . . . . . . . . . . . 52
4.5 Sequence Detection ....................... 52
4.6 Parameter Estimation ...................... 56
4.7 Numerical Results ........................ 58
4.7.1 One-shot Detection with Perfect A Priori Information 59
4.7.2 One-shot Detection with No A Priori Information . 65
4.7.3 Sequence Detection Using RS-Viterbi . . . . . . . . 66
4.8 Conclusions............................ 67
V. MIMO Molecular Communication in the Presence of MUI . 68
5.1 Introduction ........................... 68
5.2 Model Description of SISO Molecular Communication . . . . 70
5.2.1 General Model..................... 70
5.2.2 Decision Rule ..................... 72
5.3 MIMO Molecular Communication Schemes . . . . . . . . . . 73
5.3.1 Transmit Diversity .................. 73
5.3.2 Diversity Combining ................. 77
5.3.3 Spatial Multiplexing.................. 79
5.4 Virtual MIMO Molecular Communication Schemes . . . . . . 80
5.4.1 Cooperative Diversity................. 81
5.4.2 Molecular Detect-and-forward (DetF) Transmission Scheme......................... 81
5.5 Numerical Results ........................ 89
5.5.1 MIMO Molecular Communication . . . . . . . . . . 90
5.5.2 Virtual MIMO Molecular Communication . . . . . . 94
5.6 Conclusions............................ 98
VI. Conclusions and Future Research ................. 99
6.1 Summary of Contributions ................... 99
6.2 Future Research ......................... 101
BIBLIOGRAPHY................................ 103
dc.language.isoen
dc.title基於分子擴散之數位通訊zh_TW
dc.titleDiffusion-Based Digital Molecular Communicationen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree博士
dc.contributor.oralexamcommittee李志鵬,林丁丙,李佳翰,張進福,楊谷章
dc.subject.keyword擴散程序,分子通訊,交互符號干擾,互消息,通道容量,多輸入多輸出,合作式通訊,信號轉送,zh_TW
dc.subject.keywordDiffusion process,Molecular communication,Inter-symbol interference,Mutual information,Channel capacity,MIMO,Cooperative communication,Relaying,en
dc.relation.page108
dc.rights.note有償授權
dc.date.accepted2012-07-19
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  目前未授權公開取用
12.83 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved