Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65625
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳素雲(Su-Yun Huang)
dc.contributor.authorYu-Tin Linen
dc.contributor.author林昱廷zh_TW
dc.date.accessioned2021-06-16T23:54:41Z-
dc.date.available2014-07-20
dc.date.copyright2012-07-20
dc.date.issued2012
dc.date.submitted2012-07-18
dc.identifier.citation[1] B‥uhlmann, P. and van de Geer, S. (2011). Statistics for High-Dimensional Data:
Methods, Theory and Applications. Springer Series in Statistics.
[2] Cand`es, E. J., Li, X., Ma, Y. andWright, J. (2011). Robust principal component
analysis? Journal of the ACM, 58(3), Article 11.
[3] Cook, R. D. and Ni, L. (2005). Sufficient dimension reduction via inverse regression:
a minimum discrepancy approach. Journal of American Statistical
Association, 100(470), 410-428.
[4] Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood
and its oracle properties. Journal of American Statistical Association, 96(456),
1348-1360.
[5] Henderson, H. V. and Searle, S. R. (1979). Vec and vech operators for matrices,
with some uses in Jacobians and multivariate statistics. Canadian Journal of
Statistics, 7(1), 65-81.
[6] Kolda, T.G. and Bader, B.W. (2009). Tensor decompositions and applications.
SIAM Review, 51(3), 455-500.
[7] Liu, H., Roeder, K. and Wasserman, L. (2010). Stability approach to
regularization selection (StARS) for high dimensional graphical models.
arXiv:1006.3316v1
Screen and Clean software http://wpicr.wpic.pitt.edu/WPICCompGen/
[8] Magnus, J. R. and Neudecker, H. (1979). The commutation matrix: some properties
and applications. Annals of Statistics, 7(2), 381-394.
[9] Shapiro, A. (1986). Asymptotic theory of overparameterized structural models.
Journal of American Statistical Association, 81(393), 142-149.
[10] Tusher, V. G., Tibshirani, R., and Chu, G. (2001). Significance analysis of
micro-arrays applied to the ionizing radiation response. Proceedings of the Na-
tional Academy of Sciences, 98(9), 5116-5121.
[11] Wasserman, L. and Roeder, K. (2009). High-dimensional variable selection.
Annals of Statistics, 37(5A), 2178-2201.
[12] Wu, J., Devlin, B., Ringquist, S., Trucco, M. and Roeder, K. (2010). Screen
and clean: a tool for identifying interactions in genome-wide association studies.
Genetic Epidemiology, 34(3), 275-285.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65625-
dc.description.abstractResearchers in biological sciences nowadays often encounter the curse of
high-dimensionality. A serious consequence is that many traditional statistical
methods fail to fit for high-dimensional models. The problem becomes even
more severe when the interest is in interactions between variables, as there will
be p(p−1)/2 interaction terms with p variables. To improve the performance,
in this thesis we model the interaction effects utilizing its matrix form with
a low-rank structure. A low-rank model for symmetric matrix then greatly
reduces the number of parameters required, and hence, increases the stability
and quality of statistical analysis. Individual hypothesis tests are then carried
out on each interaction effect to wash out insignificant interactions. A low-
rank matrix, however, is not necessarily sparse. We thus impose a sparsity
constraint in the second stage to select interactions.
Due to the extremely high-dimensionality for gene×gene interactions, a
single-stage method is not adequately flexible enough for variable selection.
Our sparse low-rank approach for interactions is a modification of a multi-
stage screen-and-clean procedure byWasserman and Roeder (2009) andWu et
al. (2010). We replace their mere sparsity constraint by combining a low-rank
structure and a sparsity constraint to the interactions. In simulation studies,
we show that the proposed low-rank approximation-aided screen and clean
procedure often can achieve higher power and higher selection-consistency
probability.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:54:41Z (GMT). No. of bitstreams: 1
ntu-101-R99221021-1.pdf: 2976818 bytes, checksum: 46c9fdfca827293f8a66b496e723c484 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsContents
Acknowledgements i
Abstract (in Chinese) ii
Abstract (in English) iii
Contests iv
Figures v
Tables vi
1 Introduction and model specification 1
2 Estimation procedure for sparse low-rank interaction model 4
2.1 Estimation for low-rank model with 2-norm penalty . . . . . . . . . . 5
2.1.1 Rank-2r model implementation . . . . . . . . . . . . . . . . . 5
2.1.2 Rank-1 model implementation . . . . . . . . . . . . . . . . . . 7
2.2 Estimation for sparse model with 1-norm penalty . . . . . . . . . . . 8
2.3 Why a sparse low-rank model, why not a direct sparse model? . . . . 8
3 Low-rank screening by hypothesis testing 10
3.1 Asymptotic properties . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Asymptotic testing procedure . . . . . . . . . . . . . . . . . . . . . . 11
4 Multistage variable selection for detecting
gene×gene interactions 13
4.1 Review of screen-and-clean method . . . . . . . . . . . . . . . . . . . 13
4.2 Low-rank aided screen-and-clean method . . . . . . . . . . . . . . . . 14
5 Simulation studies 16
5.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6 Conclusion discussion 33
Appendix 33
References 37
dc.language.isoen
dc.subject漸近常態zh_TW
dc.subject過度參數化zh_TW
dc.subject稀疏性zh_TW
dc.subject低秩估計zh_TW
dc.subject交互作用zh_TW
dc.subjectSparsityen
dc.subjectInteractionen
dc.subjectLow-rank approximationen
dc.subjectOver-parameterizeden
dc.subjectScreen and cleanen
dc.subjectAsymptotic normalityen
dc.title利用多層稀疏低秩迴歸探測基因與基因的交互作用zh_TW
dc.titleDetection of Gene×Gene Interactions by Multistage Sparse Low-Rank Regressionen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳宏(Hung Chen),陳鵬文(Peng-Wen Chen),洪弘(Hung Hung),蕭朱杏(Chuh-Sing Hsiao)
dc.subject.keyword漸近常態,交互作用,低秩估計,過度參數化,稀疏性,zh_TW
dc.subject.keywordAsymptotic normality,Interaction,Low-rank approximation,Over-parameterized,Screen and clean,Sparsity,en
dc.relation.page38
dc.rights.note有償授權
dc.date.accepted2012-07-19
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
2.91 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved