請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65607完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳誠亮(Cheng-Liang Chen) | |
| dc.contributor.author | Tzu-Hsuan Peng | en |
| dc.contributor.author | 彭子軒 | zh_TW |
| dc.date.accessioned | 2021-06-16T23:53:32Z | - |
| dc.date.available | 2015-08-01 | |
| dc.date.copyright | 2012-08-01 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-07-19 | |
| dc.identifier.citation | [1] Huber, G. W.; Iborra, S.; Corma, A. Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysts, and Engineering, Chem. Rev. 2006, 106, 4044−4098
[2] Rackemann, D.W.; Doherty, W.O.S. Biofuels, Bioprod. Bioref. 2011, 5, 198–214 [3] Werpy T. ; Petersen G. Top Value Added Chemicals From Biomass,vol. 1, 2004, National Renewable Energy Laboratory, http://www.ntis.gov/ordering.htm [4] Fagan, P.J.; Korovessi, E.; Manzer, L.E.; Mehta, R.; Thomas, S.M. International Patent Number WO 03/085071 A1, Dupont, 2003. [5] NEXANT, INC. Biobutanol: The Next Big Biofuel, 2009 [6] Doherty, M.F; Buzad G. Reactive Distillation by Design. Chem. Eng. Res. Des., 1992. 70(A5): p. 448-458. [7] Douglas, J. M. Conceptual Design of Chemical Processes., New York, McGraw-Hill, 1988 [8] Al-Arfaj, M.; Luyben, W. L. Comparison of Alternative Control Structures for an Ideal Two-Product Reactive Distillation Column, Ind. Eng. Chem. Res., 2000. 39(9): p. 3298-3307. [9] Okasinski, M. J.; Doherty, M. F. Thermodynamic Behavior of Reactive Azeotropes, AlChE J., 1997. 43(9): p. 2227-2238. [10] Al-Arfaj, M. J.; Luyben, W. L. Control Study of Ethyl Tert-Butyl Ether Reactive Distillation, Ind. Eng. Chem. Res., 2002. 41(16): p. 3784-3796. [11] Malone, M. F.; Doherty, M. F. Reactive Distillation, Ind. Eng. Chem. Res., 2000. 39(11): p. 3953-3957. [12] Luyben, W. L. Control of the Heterogeneous Azeotropic n-Butanol/Water Distillation System, Energy & Fuels, 2008, 22, 4249–4258 [13] Bart, H.J.; Reidetschlagerj, J. ; Schatkaj, K. ; Lehmannt, A. Kinetics of Esterification of Levulinic Acid with n-Butanol by Homogeneous Catalysis, Ind. Eng. Chem. Res., 1994, 33, 21-25 [14] Yadav, G. D.; Borkar, I. V. Kinetic Modeling of Immobilized Lipase Catalysis in Synthesis of n-Butyl Levulinate, Ind. Eng. Chem. Res., 2008, 47, 3358-3363 [15] Cowley, M. A.; Schuette, H. A. Levulinic Acid. IV. The Vapor Pressures of its Normal-Alkyl Esters (C7—C10), J. Am. Chem. Soc., 1933, 55(1), 387-391 [16] Mascal, M.; Nikitin, E. B. High-yield conversion of plant biomass into the key value-added feedstocks 5-(hydroxymethyl)furfural, levulinic acid, and levulinic esters via 5-(chloromethyl)furfural, Green Chem., 2010, 12, 370–373 DOI:10.1039/b918922j [17] Manzer, L. E. Biomass Derivatives: A Sustainable Source of Chemicals; National Science Foundation Workshop: Catalysis for Renewable Conversion, Arlington, VA, April 14-15, National Science Foundation: Washington, DC, 2004. [18] Qureshi, N.; Blaschek, H. P. Butanol production from agricultural biomass. In Food Engineering, 2nd; CRC Taylor and Francis, Oxford, U.K., 2006, 20, 525-549. [19] Luyben, W. L.; Yu, C. C. Reactive Distillation Design and Control. 2008, Hoboken, N.J., AIChE. [20] Cox, G. J.; Dodds, M. L. Some Alkyl Esters of Levulinic Acid, the Sugar Institute, Inc., Mellon Institute of Industrial Research, Pittsburgh, Pa. [21] Douglas, J. M. Conceptual Design of Chemical Processes. 1988, New York, McGraw-Hill. [22] Seider, W.D.; Seader, J. D.; Lewin, D. R.; Widagdo, S. Product and Process Design Principles: Synthesis, Analysis and Design, Wiley, 2010. [23] Garrett P.; Moreau, M. MTBE as a Ground Water Contaminate, National Water Well Association and American Petroleum Institute Conference on Petroleum and Organic Chemicals in Ground Water, Houston, Texas, Dublin, Ohio, National Water Well Association, 1986. [24] Stockhardt, J. S.; Hull, C.M. Vapor-liquid equilibria and boiling point composition relations for systems n-butanol-water and isobutanol-water, Ind. Eng. Chem. Ind. Ed., 1931 [25] Hill, A. E.; Maliso, W. M. The Mutual Solubility of Normal Butyl Alcohol and Water, J. Am. Chem. Soc., 1926 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65607 | - |
| dc.description.abstract | 乙酰丙酸正丁酯,英文學名Levulinic Acid Butyl Ester(LABE)或稱為左旋糖酸正丁酯,其高辛烷值、高含氧量且不溶於水造成汙染的特性,目前被視為一種極具應用潛力的汽柴油添加劑。同時,生產LABE的原料「正丁醇(n-Butanol)與乙酰丙酸(LA)」兩者皆能分別從製造生質燃料的程序中獲得,例如:生質正丁醇能夠由製造生質丙酮的ABE(Acetone-butanol-ethanol)發酵製程中獲得,而LA可經由木質纖維素水解製程中獲得,是一種應用相當廣泛的中間產物。如此,LABE能夠成為一個相當具有價值的生質材料。
乙酰丙酸之酯類的傳統製程主要分為兩個部分。首先,將乙酰丙酸(LA)轉化成當歸內酯(Angelica lactone),再將其與醇類混合反應成LA之酯類。然而,兩步驟的反應將使的流程變得複雜並付出較高的成本。除此之外,另一個製程是直接將LA與醇類混合進行酯化反應,但此反應受限於反應平衡的限制,必須要能分離未反應的物質並回流再混合進行反應,如此可能與傳統製程有類似的高操作成本問題。對於直接的酯化反應而言,利用「反應蒸餾」的方式,能夠大幅簡化因酯化系統中的平衡反應,使得程序中含有較複雜的反應與分離系統之問題。 在反應蒸餾系統中,正丁醇(n-Butanol)與LA將分別在適當的位置進到蒸餾塔中,此反應的硫酸觸媒將預先與LA混合再進到蒸餾塔內。反應蒸餾塔的精餾段為非均相共沸的蒸餾系統,其目的為在塔頂分離酯化的副產物─水,而反應段在精餾段之下,其目的是將LA與正丁醇進行酯化反應生成LABE,並在塔底分離酯化的主產物─LABE。本研究使用ASPEN plus當作程序模擬軟體,得到以當量比之反應物進料時,此強化程序應用於LABE製程的反應與分離系統相當具有可行性。 | zh_TW |
| dc.description.abstract | Butyl Levulinate (LABE) is one of the potential fuel additives due to its good characteristics such as high octane number, high oxygen content, and low water solubility, etc. In the mean time, the raw materials that can produce LABE are n-Butanol (n-butyl alcohol) and Levulinic acid (LA). Both of them can come from biochemical conversions. For example, the biobutanol can be produced by ABE (Acetone-Butanol-Ethanol) fermentation process, and LA is one of the famous intermediate from hydrolysis of lignocellulostic biomass. Therefore, LABE becomes the variable biomass material.
The traditional process to manufacture levulinic ester takes two-step reactions. First, converting the Levulinic acid to angelica lactone and then followed by reaction of angelica lactone with alcohol. However, the two-step reactions may result in complicated process flowsheet and high operating cost. Direct esterification is an alternative way to produce levulinic esters, but the equilibrium limitation still have similar problem like the traditional process. This work aims to use the reactive distillation for simplifying the process of direct esterification of Levulinic acid to Butyl Levulinate. In the reactive distillation system, n-Butanol (n-butyl alcohol) and Levulinic acid are added into the column with sulfuric acid as the catalyst. Levulinic acid and n-Butanol are converted to Butyl Levulinate as bottom product in the reaction section. The rectifying section is the heterogeneous azeotropic distillation system that can separate high purity water as the top product. By using ASPEN plus as simulation platform, the economy and applicability of the proposed reactive distillation process with stoichiometric feed of Levulinic acid and n-Butanol is illustrated in this study. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T23:53:32Z (GMT). No. of bitstreams: 1 ntu-101-R99524055-1.pdf: 3549280 bytes, checksum: b95ce90796aa92eeadd8b556f1baac2e (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 致謝 I
摘要 III Abstract V 目錄 VII 圖目錄 XI 表目錄 XV 1. 緒論 1 1.1. 研究背景 1 1.2. 研究動機 4 1.3. 文獻回顧 9 1.3.1. 反應蒸餾 9 1.3.2. 非均勻相共沸蒸餾 11 1.4. 組織章節 13 2. 動力學分析 14 2.1. 前言 14 2.2. 動力學分析 15 2.2.1. 淨反應與反應熱力學分析 15 2.2.2. 均勻相硫酸觸媒催化反應 18 2.2.3. Lipase非均勻相觸媒催化反應 19 3. 熱力學模式 21 3.1. 前言 21 3.2. 相平衡實驗數據與熱力學參數回歸 21 3.3. 系統所使用的熱力學模式 22 3.4. 熱力學參數回歸結果 23 3.5. 沸點排序表與x-y圖 24 3.5.1. 「正丁醇—水」系統 25 3.5.2. 「正丁醇—LABE」系統 26 3.5.3. 「正丁醇—LA」系統 27 3.5.4. 「LABE—LA」系統 28 3.5.5. 「LABE—水」系統 29 3.5.6. 「LA—水」系統 30 3.6. 蒸餘曲線圖(Residual Curve Maps) 31 3.6.1. 簡介 31 3.6.2. 系統的蒸餘曲線圖 32 4. 程序設計 35 4.1. 固定式觸媒程序 35 4.2. 均勻相觸媒程序 36 4.2.1. 反應蒸餾系統 36 4.2.2. 不同進料比的探討 38 4.2.3. 觸媒回收程序 41 4.3. 結論 42 5. 穩態模擬結果與最適化分析 43 5.1. 前言 43 5.2. 反應蒸餾塔初步模擬結果 43 5.3. 設計參數與變數分析 44 5.3.1. 反應之轉化率 44 5.3.2. 進料正丁醇過量比 45 5.3.3. 反應蒸餾塔操作壓力 46 5.3.4. 硫酸觸媒之混和比例 48 5.3.5. 進料位置 49 5.3.6. 分相槽溫度 49 5.3.7. 高純度水回收之操作 52 5.3.8. 過量正丁醇的回收與產物分離系統 53 5.3.9. 最適化分析 53 5.4. 不同操作壓力與過量比的探討 56 5.4.1. 設計操作條件 56 5.4.2. 設計操作(一):高壓操作與過量正丁醇進料 56 5.4.3. 設計操作(二):中壓操作與過量正丁醇進料 62 5.4.4. 設計操作(三):中壓操作與反應係數比之進料 68 5.5. 結果與討論 73 5.5.1. 蒸餾塔塔底加熱之熱源選擇 73 5.5.2. 各操作情況下的成本比較 74 6. 動態模擬結果 77 6.1. 前言 77 6.2. 控制環路設計 77 6.3. 控制架構的探討 78 6.3.1. 控制架構分類 78 6.3.2. 系統所承受的干擾 79 6.3.3. 開環路靈敏度分析(Open loop sensitivity analysis) 80 6.3.4. 控制器參數調諧方法 81 6.4. 雙點溫控(dual-point control)的模擬結果 82 6.5. 閉環路靈敏度分析(Close loop sensitivity analysis) 88 6.6. 單點溫控( single-point control)的模擬結果 90 6.7. 控制結果討論 95 7. 結論 97 參考文獻 99 附錄 102 A 年總成本計算公式 102 | |
| dc.language.iso | zh-TW | |
| dc.subject | 丙酸丁酯 | zh_TW |
| dc.subject | 乙酰 | zh_TW |
| dc.subject | 酯化反應 | zh_TW |
| dc.subject | 反應蒸餾 | zh_TW |
| dc.subject | 乙酰 | zh_TW |
| dc.subject | 丙酸 | zh_TW |
| dc.subject | Levulinic acid | en |
| dc.subject | Reactive distillation | en |
| dc.subject | Butyl Levulinate | en |
| dc.subject | Esterification | en |
| dc.title | 乙酰丙酸正丁酯之反應蒸餾製程設計 | zh_TW |
| dc.title | Design of Reactive Distillation Process for the Production of n-Butyl Levulinate | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 錢義隆(I-Lung Chien) | |
| dc.contributor.oralexamcommittee | 鄭智成,李豪業,吳哲夫(Jeffrey D. Ward) | |
| dc.subject.keyword | 乙酰,丙酸丁酯,酯化反應,反應蒸餾,乙酰,丙酸, | zh_TW |
| dc.subject.keyword | Butyl Levulinate,Esterification,Reactive distillation,Levulinic acid, | en |
| dc.relation.page | 103 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-07-19 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 3.47 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
