請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65602
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王興華(Ching-Hua Wang) | |
dc.contributor.author | Jhen-Han Tang | en |
dc.contributor.author | 唐振翰 | zh_TW |
dc.date.accessioned | 2021-06-16T23:53:13Z | - |
dc.date.available | 2017-08-01 | |
dc.date.copyright | 2012-08-01 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-07-19 | |
dc.identifier.citation | 1. Ahmed, M. R. and S. D. Sharma (2005). 'An investigation on the aerodynamics of a symmetrical airfoil in ground effect.' Experimental Thermal and Fluid Science 29(6): 633-647.
2. Aono, H., F. Liang, et al. (2008). 'Near- and far-field aerodynamics in insect hovering flight: an integrated computational study.' Journal of Experimental Biology 211(2): 239-257. 3. Barber, T. (2006). 'Aerodynamic ground effect: a case study of the integration of CFD and experiments.' International Journal of Vehicle Design 40(4): 299-316. 4. Berg, A. M. and A. A. Biewener (2010). 'Wing and body kinematics of takeoff and landing flight in the pigeon (Columba livia).' Journal of Experimental Biology 213(10): 1651-1658. 5. Blake, R. W. (1983). 'Mechanics of gliding in birds with special reference to the influence of the ground effect.' Journal of Biomechanics 16(8): 649-654. 6. Brill, C., D. P. Mayerkunz, et al. (1989). 'Wing profile data of a free-gliding bird.' Naturwissenschaften 76(1): 39-40. 7. Dhawan, S. (1991). 'Bird Flight.' Sadhana-Academy Proceedings in Engineering Sciences 16: 275-352. 8. Jung, K., H. Chun, et al. (2008). 'Experimental investigation of wing-in-ground effect with a NACA6409 section.' Journal of Marine Science and Technology 13(4): 317-327. 9. Liu, H. (2009). 'Integrated modeling of insect flight: From morphology, kinematics to aerodynamics.' Journal of Computational Physics 228(2): 439-459. 10. Liu, H. and K. Kawachi (1999). 'A numerical study of undulatory swimming.' Journal of Computational Physics 155(2): 223-247. 11. Maybury, W. J. and J. M. V. Rayner (2001). 'The avian tail reduces body parasite drag by controlling flow separation and vortex shedding.' Proceedings of the Royal Society of London Series B-Biological Sciences 268(1474): 1405-1410. 12. O'Farrell, B., J. Davenport, et al. (2002). 'Was Archaeopteryx a wing-in-ground effect flier?' 144(4): 686-688. 13. Pennycuick, C. J. (1983). 'Thermal soaring compared in 3 dissimilar tropical bird species, Fregata-Magnificens, Pelecanus-Occidentalis and Coragyps-Atratus.' Journal of Experimental Biology 102(Jan): 307-325. 14. Pennycuick, C. J. (1996). 'The simple science of flight: From insects to jumbo jets - Tennekes, H.' Nature 381(6578): 126-126. 15. Pennycuick, C. J., T. Alerstam, et al. (1979). 'Soaring migration of the common crane grus-grus observed by radar and from an aircraft.' Ornis Scandinavica 10(2): 241-251. 16. Pereira, J. M. C., N. A. R. Maia, et al. (2009). 'A computational fluid Dynamics Study of a 2D Airfoil in Hovering Flight Under Ground Effect.' Cmes-Computer Modeling in Engineering & Sciences 49(2): 113-141. 17. Pornsin-sirirak, T. N., Y. C. Tai, et al. (2001). 'Titanium-alloy MEMS wing technology for a micro aerial vehicle application.' Sensors and Actuators a-Physical 89(1-2): 95-103. 18. Rayner, J. M. V. (1985). 'Bounding and undulating flight in birds.' Journal of Theoretical Biology 117(1): 47-77. 19. Rayner, J. M. V. (1991). 'On the Aerodynamics of Animal Flight in Ground Effect.' Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 334(1269): 119-128. 20. Rayner, J. M. V. and A. L. R. Thomas (1991). 'On the Vortex Wake of an Animal Flying in a Confined Volume.' Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 334(1269): 107-117. 21. Russ Tedrake, Z. J., Rick Cory, John William Roberts, Warren Hoburg (2006). Learning to Fly like a Bird. Massachusetts Institute of Technology Computer Science and Artificial Intelligence Lab: 1-7. 22. Sachs, G. and M. A. Moelyadi (2006). 'Effect of slotted wing tips on yawing moment characteristics.' Journal of Theoretical Biology 239(1): 93-100. 23. Sachs, G. and M. A. Moelyadi (2010). 'CFD Based Determination of Aerodynamic Effects on Birds with Extremely Large Dihedral.' Journal of Bionic Engineering 7(1): 95-101. 24. Shyy, W., H. Aono, et al. (2010). 'Recent progress in flapping wing aerodynamics and aeroelasticity.' Progress in Aerospace Sciences 46(7): 284-327. 25. Squire, L. C. (1967). 'Batchelor, Gk - an Introduction to Fluid Dynamics.' Journal of the Royal Aeronautical Society 71(683): 801-&. 26. Su, J. Y., S. C. Ting, and J. T. Yang (2011). 'How a small bird executes a sharp turning maneuver: a mechanical perspective.' Experimental Mechanics. 27. Tobalske, B. W. (2000). 'Biomechanics and physiology of gait selection in flying birds.' Physiological and Biochemical Zoology 73(6): 736-750. 28. Tobalske, B. W. (2007). 'Biomechanics of bird flight.' Journal of Experimental Biology 210(18): 3135-3146. 29. Tobalske, B. W., D. L. Altshuler, et al. (2004). 'Take-off mechanics in hummingbirds (Trochilidae).' Journal of Experimental Biology 207(8): 1345-1352. 30. Tobalske, B. W., J. W. D. Hearn, et al. (2009). 'Aerodynamics of intermittent bounds in flying birds.' Experiments in Fluids 46(5): 963-973. 31. Tucker, V. A. (1990). 'Body Drag, Feather Drag and Interference Drag of the Mounting Strut in a Peregrine Falcon, Falco-Peregrinus.' Journal of Experimental Biology 149: 449-468. 32. Videler, J. J. (2005). 'Avian flight.' Oxford ornithology series: 258. 33. Videler, J. J. (2005). 'How archaeopteryx could run over water.' 34. Warrick, D. R. and K. P. Dial (1998). 'Kinematic, aerodynamic and anatomical mechanisms in the slow, maneuvering flight of pigeons.' Journal of Experimental Biology 201(5): 655-672. 35. Warrick, D. R., B. W. Tobalske, et al. (2009). 'Lift production in the hovering hummingbird.' Proceedings of the Royal Society B-Biological Sciences 276(1674): 3747-3752. 36. Withers, P. C. (1979). 'Aerodynamics and Hydrodynamics of the Hovering Flight of Wilson Storm Petrel.' Journal of Experimental Biology 80(Jun): 83-91. 37. Withers, P. C. (1981). 'An Aerodynamic Analysis of Bird Wings as Fixed Aerofoils.' Journal of Experimental Biology 90(Feb): 143-162. 38. Withers, P. C. and P. L. Timko (1977). 'Significance of Ground Effect to Aerodynamic Cost of Flight and Energetics of Black Skimmer (Rhyncops-Nigra).' Journal of Experimental Biology 70(Oct): 13-26. 39. Yang, L. J., C. K. Hsu, et al. (2007). 'Flapping wings with PVDF sensors to modify the aerodynamic forces of a micro aerial vehicle.' Sensors and Actuators a-Physical 139(1-2): 95-103. 40. Yu-Hung Chang, S.-C. T., Chieh-Cheng Liu, Jing-Tang Yang and Chyi-Yeou Soong (2011). 'An unconventional mechanism of lift production during the downstroke in a hovering bird (Zosterops japonicus).' 41. Ting, S. C.Sheu, T. W. H. and Y. H. Chen (2007). 'Numerical study of flow field induced by a locomotive fish in the moving meshes.' International Journal for Numerical Methods in Engineering 69(11): 2247-2263. 42. Zachary C. Hoisington, Blaine K. Rawdon (2003). 'Ground effect wing having a variable sweep winglet. ' United Stated Patent. 43. Alexander M. Lippisch (1965). 'Ground effects utilizing and transition aircraft. ' United Stated Patent. 44. Dietmar Schonfelder (1979). 'Wing construction for surface effect vehicle. ' United Stated Patent. 45. Krishnamurty Karamcheti, 1980, Principles of Ideal-Fluid Aerodynamics, Krieger Publishing Company. 46. Federal Aviation Administration, 2009, Pilot's Handbook of Aeronautical Knowledge, Sterling Pub Co Inc. 47. 曾銳、昂海松、梅源、季健,2005,撲翼柔性及其對氣動特性的影響,計算力學學報。 48. 王玲玲,2004,大渦模擬理論及其應用綜述,河海大學學報第32卷第3期。 49. 劉厚林、董亮、王勇、王凱、路明臻,2010,流體機械CFD中的網格生成方法進展,流體力學38卷4期。 50. 劉玠成,2009,綠繡眼飛對稱懸停飛行機制研究,國立台灣大學工學院機械工程學系碩士論文。 51. 章聿珩,2010,運動學參數對鳥類拍翅翼之升力影響,國立台灣大學工學院機械工程學系碩士論文。 52. 余政倫,2012,魚類胸鰭張開與收合游動模式之流體動力學研究,國立清華大學動力機械工程學系博士論文。 53. 胡舉軍,2002,旋翼與振翅翼之數值研究,國立成功大學,航空太空工程研究所博士論文 54. 陳建軍,2006,非結構網格生成及其並行化的若干問題研究,浙江大學博士學位論文。 55. 王福軍,2004,計算流體力學分析-CFD軟件原理與應用,清華大學出版社。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65602 | - |
dc.description.abstract | 本研究以三維數值模擬方法研究小型鳥類在近地航行時因為翼地效應(ground effect)的影響造成升力增加、阻力減少的現象。以定量與定性的方式探討物理模型在不同距地高度下,地面阻斷翼尖渦流(wingtip-vortices)結構現象的差異性,並分析翅膀翼面下方與地面間的流體因翼尖渦流以及氣墊效應(ram effect)的干擾所產生流動特徵的變化加以討論。前人之研究大多以雙翅物理模型以及靜態滑翔模擬為研究主軸,忽略了身體以及動態拍撲對於流場帶來的變化,本研究探討這些被忽略的因素對於翼地效應所產生的影響。靜態滑翔之模擬結果顯示:翼面下方的流體會因為翼尖渦流導致下洗速度(downwash)產生,靠近雙翼中心的流體較不易因翼尖渦流而改變流動方向。在僅有雙翼的情況下,當翅膀距地低於一倍的半翼展長(semi-span)時,越靠近地面翼地效應現象將會越顯著,特別是在距地0.37倍半翼展長時,阻力減少12%。然而對於完整鳥類模型翼地效應現象卻不明顯,原因是身體與地面間吸引效應(suction effect)的產生。
在鳥類動態拍撲模擬之子題,耦合三種拍撲模式,分別為拍動(flapping)、摺疊(folding)以及扭轉(twisting)。研究結果顯示:鳥類拍撲一週期僅有下拍過程產生升力,上拍過程對於升力並無貢獻。對於滑翔飛行型態,翼尖渦流與氣墊效應皆為翼地效應的主導者。然而對於動態拍撲飛行,由於拍撲對於流體速度的影響遠大於翼尖渦流所造成的效應,致使翼尖渦流之影響減弱而氣墊效應取得流場流動特徵之主導權。本研究亦發現由於氣墊效應主導整個流場的變化,導致鳥類近地拍撲飛行相對於遠地拍撲飛行,其平均升力約增加47%且平均阻力約減少20%。本研究所揭示之鳥類翅膀與身體間的影響及動態拍撲的分析,將可啟發鳥類相關的模擬與實驗研究者不同的思維。 | zh_TW |
dc.description.abstract | An investigation with computational fluid dynamics of the ground effect on a small bird revealed quantitatively the obstruction of the vortex expansion resulting from the presence of the ground at varied distance. Preceding authors focused mainly on the simulation of static bird’s wings, generally neglecting the bird’s body and maneuverable wings; we discuss specifically the distinction of the aerodynamic effect between cases with and without the presence of the bird’s body. The results of static simulation show that, considering only two wings, for a distance between the wing model and the ground smaller than a semi-span, the smaller is the ground clearance, the more significant is the ground effect. At clearance 0.37 times a semi-span, the drag is decreased 12%. The ground effect for an intact bird model composed of both wings and body is less effective than that for a simplified model with body omitted, because a suction was observed on the lower surface of the intact bird’s trunk at clearance 0.37 times a semi-span; for this reason the intact bird model benefits less from the ground effect than the model with body excluded, but increased lift and decreased drag remain observable.
In our research we treat the dynamic simulation with maneuverable wings coupling of the flapping, folding, and twisting motion. The results of dynamic simulation show that: There is almost no lift generation in upstroke process; lift is generated in down stroke process. We unexpectedly found that in the model with flapping wings the ram effect dominate the fluid field rather than the wingtip vortex. It is because that the acceleration of the fluid caused by flapping is much bigger than the wingtip vortex does, resulting the effect of the obstruction of the vortex to become weaker. We also found at β = 1.026 the average of lift is increased 47%, and the drag is decreased 20%. The present study provides an insight into experimental and computational research dealing with ground effect of a flapping bird and also reveals the importance of the presence of bird’s body in computational or experimental models. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T23:53:13Z (GMT). No. of bitstreams: 1 ntu-101-R99522114-1.pdf: 7273839 bytes, checksum: f7d46b39ff077c03304fa17eda416056 (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 摘要 i
Abstract ii 誌謝 iv 目錄 v 圖表目錄 viii 符號說明 xi 第一章 前言 1 1-1前言 1 1-2 研究動機 3 第二章 文獻回顧 4 2-1 鳥類飛行方式 4 2-1.1 鳥類之身體構造 4 2-1.2 飛行模式 5 2-1.3 鳥類飛行動作分析 7 2-2 空氣動力學 10 2-2.1 名詞與參數介紹 10 2-2.2 飛行阻力 11 2-2.3 控制體積法與升力線理論計算誘導阻力 12 2-2.4 翼地效應 16 2-2.5 吸引效應 17 2-3 翼地效應之應用 18 2-3.1 航空器之現狀 18 2-3.2 翼地效應機歷史概述 18 2-3.3 翼地效應機之演化 21 2-4 鳥類與昆蟲之數值模擬 22 2-4.1 靜態網格之數值模擬 22 2-4.2 動態網格之數值模擬 24 第三章 研究方法 30 3-1 因次分析 32 3-2 物理模型與統御方程式 34 3-3 運動方程式 38 3-4 數值方法 40 3-4.1 CFD軟體介紹 40 3-4.2 網格生成 42 3-4.3 CFD求解過程 48 3-4.4 紊流數值模擬方法 53 3-4.5 數值驗證 56 3-5 模擬參數 56 第四章 結果與討論 58 4-1 忽略鳥類身體構造之物理模型 58 4-1.1 雙翅物理模型在不同攻角時之流場與參數特性 58 4-1.2 雙翅物理模型在不同離地間隙之流場與參數特性 60 4-2 完整之鳥類物理模型 65 4-2.1 完整鳥類模型在不同離地間隙之流場與參數特性 65 4-2.2 身體與翼面下方在不同離地間隙之流場與參數特性 68 4-3 鳥類近地滑翔飛行之結論 71 4-4 暫態之鳥類拍撲物理模型 72 4-4.1鳥類拍撲動作分析 72 4-4.2暫態拍撲物理模型在不同離地間隙之流場與參數特性 75 4-4.3鳥類拍撲之可視化流場分析 78 4-4.4實驗與模擬之邊界條件分析與比較 89 4-4.5掠海飛行分析與探討 91 第五章 結論與未來展望 94 5-1 結論 94 5-2 未來展望 95 5-3 工作進度甘梯圖 96 第六章 參考文獻 98 個人簡歷 104 附錄1: A numerical investigation of the ground effect for a small bird 106 附錄2: 小型鳥類近地滑翔飛行之翼地效應分析 107 附錄3: 鳥類拍撲翼飛行對翼地效應的影響 108 | |
dc.language.iso | zh-TW | |
dc.title | 鳥類拍撲翼飛行對翼地效應的影響 | zh_TW |
dc.title | Aerodynamic Characteristics of Ground Effect in Flapping Flight of Small Birds | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 楊鏡堂(Jing-Tang Yang) | |
dc.contributor.oralexamcommittee | 黃美嬌(Mei-Jiau Huang),許文翰(Tony Wen-Hann Sheu),戴昌賢(Chang-Hsien Tai),牛仰堯(Yang-Yao Niu) | |
dc.subject.keyword | 鳥,翼地效應,翼尖渦流,氣墊效應,拍撲,滑翔, | zh_TW |
dc.subject.keyword | small bird,ground effect,ram effect,wing-tip vortex,flapping,gliding, | en |
dc.relation.page | 108 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-07-20 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
顯示於系所單位: | 機械工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 7.1 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。