Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65582
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張書瑋
dc.contributor.authorKai-Chih Yehen
dc.contributor.author葉凱智zh_TW
dc.date.accessioned2021-06-16T23:51:54Z-
dc.date.available2022-02-19
dc.date.copyright2020-02-19
dc.date.issued2020
dc.date.submitted2020-02-17
dc.identifier.citationSchlicke, H., et al., Tuning the Elasticity of Cross-Linked Gold Nanoparticle Assemblies. The Journal of Physical Chemistry C, 2019. 123(31): p. 19165-19174.
Yeh, Y.C., B. Creran, and V.M. Rotello, Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale, 2012. 4(6): p.1871-80.
Dreaden, E.C., et al., The golden age: gold nanoparticles for biomedicine. Chem Soc Rev, 2012. 41(7): p. 2740-79.
Rao, C.R., et al., Metal nanoparticles and their assemblies. Chemical Society Reviews, 2000. 29(1): p. 27-35.
Yang, X., et al., Gold Nanomaterials at Work in Biomedicine. Chem Rev, 2015. 115(19): p. 10410-88.
Her, S., D.A. Jaffray, and C. Allen, Gold nanoparticles for applications in cancer radiotherapy: Mechanisms and recent advancements. Adv Drug Deliv Rev, 2017. 109: p. 84-101.
Zhao, P., N. Li, and D. Astruc, State of the art in gold nanoparticle synthesis. Coordination Chemistry Reviews, 2013. 257(3-4): p. 638-665.
Perezjuste, J., et al., Gold nanorods: Synthesis, characterization and applications. Coordination Chemistry Reviews, 2005. 249(17-18): p. 1870-1901.
Lohse, S.E. and C.J. Murphy, The Quest for Shape Control: A History of Gold Nanorod Synthesis. Chemistry of Materials, 2013. 25(8): p. 1250-1261.
Grzelczak, M., et al., Shape control in gold nanoparticle synthesis. Chem Soc Rev, 2008. 37(9): p. 1783-91.
Ghosh, P., et al., Gold nanoparticles in delivery applications. Adv Drug Deliv Rev, 2008. 60(11): p. 1307-15.
Sperling, R.A., et al., Biological applications of gold nanoparticles. Chemical Society Reviews, 2008. 37(9): p. 1896-1908.
Saha, K., et al., Gold nanoparticles in chemical and biological sensing. Chem Rev, 2012. 112(5): p. 2739-79.
Mieszawska, A.J., et al., Multifunctional gold nanoparticles for diagnosis and therapy of disease. Mol Pharm, 2013. 10(3): p. 831-47.
Mueggenburg, K.E., et al., Elastic membranes of close-packed nanoparticle arrays. Nat Mater, 2007. 6(9): p. 656-60.
He, J., et al., Fabrication and mechanical properties of large-scale freestanding nanoparticle membranes. Small, 2010. 6(13): p. 1449-56.
Cheng, W., et al., Free-standing nanoparticle superlattice sheets controlled by DNA. Nat Mater, 2009. 8(6): p. 519-25.
Schlicke, H., et al., Freestanding films of crosslinked gold nanoparticles prepared via layer-by-layer spin-coating. Nanotechnology, 2011. 22(30): p. 305303.
Si, K.J., et al., Nanoparticle Superlattices: The Roles of Soft Ligands. Adv Sci (Weinh), 2018. 5(1): p. 1700179.
Herrmann, J., et al., Nanoparticle films as sensitive strain gauges. Applied Physics Letters, 2007. 91(18).
Olichwer, N., et al., Cross-linked gold nanoparticles on polyethylene: resistive responses to tensile strain and vapors. ACS Appl Mater Interfaces, 2012. 4(11): p. 6151-61.
Segev-Bar, M., et al., Tunable touch sensor and combined sensing platform: toward nanoparticle-based electronic skin. ACS Appl Mater Interfaces, 2013. 5(12): p. 5531-41.
Schlicke, H., et al., Cross-Linked Gold-Nanoparticle Membrane Resonators as Microelectromechanical Vapor Sensors. ACS Sens, 2017. 2(4): p. 540-546.
Schlicke, H., et al., Resistive pressure sensors based on freestanding membranes of gold nanoparticles. Nanoscale, 2016. 8(1): p. 183-6.
Wang, Y., et al., Fracture and failure of nanoparticle monolayers and multilayers. Nano Lett, 2014. 14(2): p. 826-30.
Joseph, Y., et al., Self-assembled gold nanoparticle/alkanedithiol films: preparation, electron microscopy, XPS-analysis, charge transport, and vapor- sensing properties. The Journal of Physical Chemistry B, 2003. 107(30): p. 7406- 7413.
Schlicke, H., et al., Elastic and Viscoelastic Properties of Cross-Linked Gold Nanoparticles Probed by AFM Bulge Tests. The Journal of Physical Chemistry C, 2014. 118(8): p. 4386-4395.
Podsiadlo, P., et al., The role of order, nanocrystal size, and capping ligands in the collective mechanical response of three-dimensional nanocrystal solids. Journal of the American Chemical Society, 2010. 132(26): p. 8953-8960.
Gauvin, M., et al., Mechanical Properties of Au Supracrystals Tuned by Flexible Ligand Interactions. The Journal of Physical Chemistry C, 2014. 118(9): p. 5005- 5012.
Zabet-Khosousi, A. and A.-A. Dhirani, Charge transport in nanoparticle assemblies. Chemical reviews, 2008. 108(10): p. 4072-4124.31. Baron, A., et al., [INVITED] Self-assembled optical metamaterials. Optics &
Laser Technology, 2016. 82: p. 94-100.
Ray, P.C., et al., Gold Nanoparticle Based FRET for DNA Detection. Plasmonics, 2007. 2(4): p. 173-183.
Brust, M., et al., Novel gold-dithiol nano-networks with non-metallic electronic properties. Advanced materials, 1995. 7(9): p. 795-797.
Vossmeyer, T., et al., Networked Gold-Nanoparticle Coatings on Polyethylene: Charge Transport and Strain Sensitivity. Advanced Functional Materials, 2008. 18(11): p. 1611-1616.
Lee, D., et al., Viscoplastic and granular behavior in films of colloidal nanocrystals. Phys Rev Lett, 2007. 98(2): p. 026103.
Ketelsen, B., et al., Fabrication of Strain Gauges via Contact Printing: A Simple Route to Healthcare Sensors Based on Cross-Linked Gold Nanoparticles. ACS Appl Mater Interfaces, 2018. 10(43): p. 37374-37385.
Schlicke, H., et al., Electrostatically Actuated Membranes of Cross-Linked Gold Nanoparticles: Novel Concepts for Electromechanical Gas Sensors. Proceedings, 2017. 1(4).
Luedtke, W. and U. Landman, Structure, dynamics, and thermodynamics of passivated gold nanocrystallites and their assemblies. The Journal of Physical Chemistry, 1996. 100(32): p. 13323-13329.
Luedtke, W.D. and U. Landman, Structure and Thermodynamics of Self-Assembled Monolayers on Gold Nanocrystallites. The Journal of Physical Chemistry B, 1998. 102(34): p. 6566-6572.
Landman, U. and W.D. Luedtke, Small is different: energetic, structural, thermal, and mechanical properties of passivated nanocluster assemblies. Faraday Discuss, 2004. 125: p. 1-22; discussion 99-116.
Liu, X., et al., Temperature-dependent surface density of alkylthiol monolayers on gold nanocrystals. Materials Research Express, 2018. 5(3).
Devi, J.M., Simulation studies on structural and thermal properties of alkane thiol capped gold nanoparticles. J Mol Graph Model, 2017. 74: p. 359-365.
Patra, T.K., et al., Ligand dynamics control structure, elasticity, and high-pressure behavior of nanoparticle superlattices. Nanoscale, 2019. 11(22): p. 10655-10666.
Kaushik, A.P. and P. Clancy, Explicit all-atom modeling of realistically sized ligand-capped nanocrystals. J Chem Phys, 2012. 136(11): p. 114702.
Lin, J.-Q., et al., Simulation Study of Aggregations of Monolayer Protected Gold Nanoparticles in Solvents. The Journal of Physical Chemistry C, 2011. 115(39): p. 18991-18998.
Schapotschnikow, P. and T.J. Vlugt, Understanding interactions between capped nanocrystals: three-body and chain packing effects. J Chem Phys, 2009. 131(12): p. 124705.
Boles, M.A. and D.V. Talapin, Many-body effects in nanocrystal superlattices: departure from sphere packing explains stability of binary phases. J Am Chem Soc, 2015. 137(13): p. 4494-502.
Ghorai, P.K. and S.C. Glotzer, Molecular dynamics simulation study of self- assembled monolayers of alkanethiol surfactants on spherical gold nanoparticles. The Journal of Physical Chemistry C, 2007. 111(43): p. 15857-15862.
Jackson, A.M., et al., From homoligand-to mixed-ligand-monolayer-protected metal nanoparticles: A scanning tunneling microscopy investigation. Journal of the American Chemical Society, 2006. 128(34): p. 11135-11149.
Lane, J.M. and G.S. Grest, Spontaneous asymmetry of coated spherical nanoparticles in solution and at liquid-vapor interfaces. Phys Rev Lett, 2010. 104(23): p. 235501.
Barnard, A.S., X. Lin, and L.A. Curtiss, Equilibrium morphology of face-centered cubic gold nanoparticles> 3 nm and the shape changes induced by temperature. The Journal of Physical Chemistry B, 2005. 109(51): p. 24465-24472.
Djebaili, T., et al., Atomistic Simulations of the Surface Coverage of Large Gold Nanocrystals. The Journal of Physical Chemistry C, 2013. 117(34): p. 17791- 17800.
Mar, W. and M.L. Klein, Molecular dynamics study of the self-assembled monolayer composed of S (CH2) 14CH3 molecules using an all-atoms model. Langmuir, 1994. 10(1): p. 188-196.
Badia, A., et al., Self-Assembled Monolayers on Gold Nanoparticles. Chemistry– A European Journal, 1996. 2(3): p. 359-363.
Lane, J.M. and G.S. Grest, Assembly of responsive-shape coated nanoparticles at water surfaces. Nanoscale, 2014. 6(10): p. 5132-7.
Salerno, K.M., et al., High strength, molecularly thin nanoparticle membranes. Phys Rev Lett, 2014. 113(25): p. 258301.
Salerno, K.M., et al., Ligand structure and mechanical properties of single-nanoparticle-thick membranes. Phys Rev E Stat Nonlin Soft Matter Phys, 2015. 91(6): p. 062403.
Salerno, K.M. and G.S. Grest, Temperature effects on nanostructure and mechanical properties of single-nanoparticle thick membranes. Faraday Discuss, 2015. 181: p. 339-54.
Markutsya, S., et al., Freely Suspended Layer-by-Layer Nanomembranes: Testing Micromechanical Properties. Advanced Functional Materials, 2005. 15(5): p. 771-780.
Liu, X., P. Lu, and H. Zhai, Ligand coverage dependence of structural stability and interparticle spacing of gold supracrystals. Journal of Applied Physics, 2018. 123(4).
Srivastava, I., et al., Mechanics of Gold Nanoparticle Superlattices at High Hydrostatic Pressures. The Journal of Physical Chemistry C, 2019. 123(28): p. 17530-17538.
Liu, X.P., Y. Ni, and L.H. He, Elastic properties of gold supracrystals: Effects of nanocrystal size, ligand length, and nanocrystallinity. J Chem Phys, 2016. 144(14): p. 144507.
Liu, X.P., Y. Ni, and L.H. He, Molecular dynamics simulation of interparticle spacing and many-body effect in gold supracrystals. Nanotechnology, 2016. 27(13): p. 135707.
Buehler, M.J., Atomistic modeling of materials failure. 2008: Springer Science & Business Media.
Plimpton, S., Fast parallel algorithms for short-range molecular dynamics. Journal of computational physics, 1995. 117(1): p. 1-19.
Humphrey, W., A. Dalke, and K. Schulten, VMD: visual molecular dynamics. Journal of molecular graphics, 1996. 14(1): p. 33-38.
Stukowski, A., Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Modelling and Simulation in Materials Science and Engineering, 2009. 18(1): p. 015012.
Jorgensen, W.L., J.D. Madura, and C.J. Swenson, Optimized intermolecular potential functions for liquid hydrocarbons. Journal of the American Chemical Society, 1984. 106(22): p. 6638-6646.
Zhao, X., Y. Leng, and P.T. Cummings, Self-assembly of 1, 4-
benzenedithiolate/tetrahydrofuran on a gold surface: A Monte Carlo simulation study. Langmuir, 2006. 22(9): p. 4116-4124.
Sadreev, A.F. and Y.V. Sukhinin, p–T diagrams of the system of CH3(CH2)n−1 self-assembled on the Au(111) crystal surface. The Journal of Chemical Physics, 1997. 107(7): p. 2643-2652.
Allen, M.P. and D.J. Tildesley, Computer simulation of liquids. 2017: Oxford university press.
Foiles, S., M. Baskes, and M.S. Daw, Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Physical review B, 1986. 33(12): p. 7983.
Nielsen, O.H. and R.M. Martin, Quantum-mechanical theory of stress and force. Phys Rev B Condens Matter, 1985. 32(6): p. 3780-3791.
Huang, R., et al., Single-crystalline and multiple-twinned gold nanoparticles: an atomistic perspective on structural and thermal stabilities. RSC Advances, 2014. 4(15): p. 7528-7537.
Djebaili, T., et al., Atomistic Simulations of Self-Assembled Monolayers on Octahedral and Cubic Gold Nanocrystals. The Journal of Physical Chemistry C, 2015. 119(36): p. 21146-21154.
Nayak, S., et al., Ordered Networks of Gold Nanoparticles Crosslinked by Dithiol-Oligomers. Particle & Particle Systems Characterization, 2018. 35(8).
Murray, C.B., a.C. Kagan, and M. Bawendi, Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annual review of materials science, 2000. 30(1): p. 545-610.
Boles, M.A., M. Engel, and D.V. Talapin, Self-Assembly of Colloidal
Nanocrystals: From Intricate Structures to Functional Materials. Chem Rev, 2016. 116(18): p. 11220-89.
Jiang, Z., et al., Subnanometre ligand-shell asymmetry leads to Janus-like nanoparticle membranes. Nat Mater, 2015. 14(9): p. 912-7.
Griesemer, S.D., et al., The role of ligands in the mechanical properties of Langmuir nanoparticle films. Soft Matter, 2017. 13(17): p. 3125-3133.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65582-
dc.description.abstract由奈米尺寸之金屬粒子和有機配體所組成的奈米粒子薄膜因為其特別的光電 和機械特性而被應用於多種微機電裝置(micro- and nanoelectromechanical, MEMS/NEMS devices),例如:應變計(strain gauge)、觸控感測器(touch sensor)、氣 壓感測器(vapor sensor)等。過去有許多研究探討了奈米粒子薄膜在力學性質和導電 性上的可調控機制。然而,在實驗上較難觀察到奈米粒子薄膜的奈米尺度機制與這 些可調控特性間的關係。在本研究中,藉由分子動力學模擬(molecular dynamics)探 討短鏈二硫醇交聯之金奈米粒子薄膜的力學性質和分子機制。我們提供一套方法 構建金奈米粒子薄膜的分子動力模擬模型,並得以控制薄膜的二硫醇鍊長、核心金 粒子直徑以及二硫醇接枝密度。金奈米粒子在形成穩定的面心立方超晶格結構,並 且金奈米粒子薄膜模型中的奈米粒子間距和薄膜楊氏係數與實驗結果接近。結果 表明,較短的二硫醇、較大的核心金粒子或較高的二硫醇接枝密度皆會導致較高的 薄膜楊氏係數。除此之外,透過觀察奈米尺度下的配體結構,發現連接兩相鄰金粒 子的全反式構型二硫醇數量與薄膜勁度呈正相關。瞭解並觀察金奈米粒子薄膜的 機械性質與其微觀結構的關係可以使我們對該材料有更深入的認識。zh_TW
dc.description.abstractGold nanoparticle thin films, composed of gold cores and organic ligands, have been used for a variety of applications because of their exceptional electronic, optical, and mechanical properties. Numerous studies explored their tenability of the elastic and electronic transport properties. However, experimental studies did not indicate clear nanoscale mechanisms for their tunable properties. In this research, molecular dynamics simulations are used to explore the nanoscale features and mechanical responses of alkanedithiol cross-linked gold nanoparticle thin films. We employed an approach to construct the cross-linked thin film models with different ligand chain lengths, nanoparticle core sizes, and ligand grafting density. The thin films with 3-D fcc superlattice structure are stable and have interparticle distances and elastic moduli consistent with the experiment. The results show that shorter ligand length, larger core size, or dense ligand coverage lead to stiffer thin films. By observing the ligand structure at nanoscale, we conclude that the number of all-trans bridge linkers is positively correlated with the thin film’s stiffness. Understanding these nanoscale details can provide us deeper insights into the mechanical properties of the cross-linked gold nanoparticle thin film.en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:51:54Z (GMT). No. of bitstreams: 1
ntu-109-R06521257-1.pdf: 15686923 bytes, checksum: d87bcd21b885d1d2121f19b53592663b (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents誌謝 ...... i
中文摘要 ...... ii
Abstract ...... iii
Contents ...... iv
List of figures ...... viii
List of tables ...... xv
1 Introduction ...... 1
1.1 Background and objectives ...... 1
1.2 Organization of the thesis ...... 3
2 LiteratureReview ...... 5
2.1 Overview of gold nanoparticle with self-assembled monolayer ...... 5
2.2 Gold nanoparticle thin film and applications ...... 6
2.3 Molecular dynamics of gold nanoparticle assemblies ...... 11
3 Method ...... 17
3.1 Molecular dynamics simulation ...... 17
3.2 Force field for gold and organic ligands ...... 19
3.3 Construction of Cross-linked GNP thin film MD model ...... 22
3.4 Uniaxial tensile test of the GNP thin film ...... 28
4 Model construction of the gold nanoparticle thin film ...... 31
4.1 Gold nanoparticle core annealing ...... 32
4.2 Adsorption of alkanethiol chains on GNP core surface ...... 34
4.3 Geometry of cross-linked GNPs superlattice structure ...... 36
4.4 Cross-linking of GNPs ...... 38
4.5 Cross-linked GNP thin film ...... 41
4.6 Summary ...... 44
5 Chain length dependence of thin film structure and elastic properties ...... 46
5.1 Equilibrium of the thin film structure ...... 47
5.1.1 Thickness of the thin film models ...... 47
5.1.2 Nearest neighbor distance of the GNP cores ...... 48
5.1.3 Number of different type linkers ...... 50
5.1.4 End to end distance of bridge linkers ...... 52
5.2 Elastic properties of the thin film with different chain length ...... 54
5.2.1 Effect of uniaxial tensile strain rate on the elastic properties ...... 54
5.2.2 Uniaxial tensile tests of GNP thin film with varying ADT chain length ...... 56
5.2.3 Effect of all-trans bridge linkers ...... 59
5.3 Summary ...... 61
6 Gold core size and ligand grafting density dependence of thin film structure and elastic properties ...... 64
6.1 GNP thin film with varying gold core diameter ...... 64
6.1.1 Number of different type linkers ...... 67
6.1.2 End to end distance of bridge linkers ...... 68
6.1.3 Uniaxial tensile tests of GNP thin film ...... 70
6.2 GNP thin film with varying ligand grafting density ...... 71
6.2.1 Nearest neighbor distance of the GNP cores ...... 72
6.2.2 Number of different type linkers ...... 74
6.2.3 Uniaxial tensile tests of GNP thin film ...... 76
6.3 Effect of the number of all-trans bridge linkers on elastic modulus ...... 77
6.4 Summary ...... 78
7 Conclusions and future work ...... 80
7.1 Conclusions ...... 80
7.2 Future work ...... 82
Reference ...... 83
dc.language.isoen
dc.subject金奈米粒子zh_TW
dc.subject薄膜zh_TW
dc.subject二硫醇zh_TW
dc.subject超精格排列zh_TW
dc.subject自組裝zh_TW
dc.subject分子動力學zh_TW
dc.subject機械性質zh_TW
dc.subjectmechanical propertiesen
dc.subjectGold nanoparticlesen
dc.subjectthin filmen
dc.subjectalkanedithiolen
dc.subjectsuperlatticesen
dc.subjectself-assemblyen
dc.subjectcrosslinkingen
dc.subjectmolecular dynamicsen
dc.title以分子動力模擬探討二硫醇交聯之金奈米粒子薄膜力學性質及分子機制zh_TW
dc.titleIn silico Exploration of Mechanical Properties and Molecular Mechanism of Alkanedithiol Cross-linked Gold Nanoparticle Thin Filmen
dc.typeThesis
dc.date.schoolyear108-1
dc.description.degree碩士
dc.contributor.oralexamcommittee徐善慧,周佳靚
dc.subject.keyword金奈米粒子,薄膜,二硫醇,超精格排列,自組裝,分子動力學,機械性質,zh_TW
dc.subject.keywordGold nanoparticles,thin film,alkanedithiol,superlattices,self-assembly,crosslinking,molecular dynamics,mechanical properties,en
dc.relation.page88
dc.identifier.doi10.6342/NTU202000504
dc.rights.note有償授權
dc.date.accepted2020-02-17
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-109-1.pdf
  未授權公開取用
15.32 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved