請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65581完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李枝宏 | |
| dc.contributor.author | Chia-Cheng Huang | en |
| dc.contributor.author | 黃家成 | zh_TW |
| dc.date.accessioned | 2021-06-16T23:51:51Z | - |
| dc.date.available | 2015-08-01 | |
| dc.date.copyright | 2012-08-01 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-07-20 | |
| dc.identifier.citation | [1] B. D. Van Veen and K. M. Buckley, 'Beamforming: A versatile approach to spatial filtering,' IEEE ASSP Magazine, pp. 4-24, April 1988.
[2] H. Krim and M. Viberg, 'Two decades of array signal processing research,' IEEE Signal Processing Magazine, pp. 67-94, July 1996. [3] L.C. Godara, 'Applications of antenna arrays to mobile communications, part II: beam-forming and direction-of-arrival considerations' Proceedings of the IEEE, vol. 85, pp. 1195-1245, Aug. 1997. [4] H. Singh and R. M. Jha, 'Trends in adaptive array processing,' International Journal of Antennas and Propagation, vol. 2012, pp.1-20, 2012. [5] P.W. Howells, 'Explorations in fixed and adaptive resolution at GE and SURC,' IEEE Transactions on Antennas Propagation, vol. AP-24, pp.575-584 , Sept. 1976. [6] S. Applebaum, 'Adaptive arrays,' IEEE Transactions on Antennas and Propagation, vol. AP-24, no. 5, pp. 585-599, Sept. 1976. [7] B. Widrow, P. E. Mantey, L. J. Gri±ths, and B. B. Goode, 'Adaptive antenna systems,' Proceedings of the IEEE, vol. 55, no. 12, pp. 2143-2158, Dec. 1967. [8] J. Capon, 'High-resolution frequency-wavenumber spectrum analysis,' Proceedings of the IEEE, vol. 57, no. 8, pp. 1408-1418, Aug. 1969. [9] O. L. Frost III, 'An algorithm for linearly constrained adaptive array processing,' Proceedings of the IEEE, vol. 60, no. 8, pp. 926-935, Aug. 1972. [10] L. J. Gri±ths and C. W. Jim, 'An alternative approach to linearly constrained adaptive beam forming,' IEEE Transactions on Antennas and Propagation, vol. 30, no. 1, pp. 27-34, Jan. 1982. [11] H. L. Van Trees, Optimum Array Processing, Part IV of Detection, Estimation, and Modulation Theory, John & Wiley Sons, Inc., New York, U.S.A., 2002. [12] R. T. Compton, Jr., Adaptive Antennas: Concepts and Performance, Englewood Cliffs, NJ: Prentice-Hall, 1988. [13] R. A. Monzingo and T.W. Miller, Introduction to Adaptive Array, New York: Wiley, 1980. [14] P. Ioannides and C. A. Balanis, 'Uniform circular arrays for smart antennas,' IEEE Antennas and Propagation Magazine, vol. 47, no. 4, pp. 192-206, Aug. 2005. [15] J.-A. Tsai, M. Buehrer, and B. D.Woerner, 'BER performance of a uniform circular array versus a uniform linear array in a mobile radio environment,' IEEE Transcations on Wireless Communications, vol. 3, no. 3, pp. 695-700, May 2004. [16] W. A. Gardner, A. Napolitano, and L. Paura 'Cyclostationarity: Half a century of research,' Signal Processing., vol 86, pp. 639-697, 2006. [17] W. A. Gardner, Cyclostationarity in Communications and Signal Processing, New York: IEEE Press, 1994. [18] ---, 'Exploitation of spectral redundancy in cyclostationary signals,' IEEE Signal Processing Magazine, pp. 14-36, April 1991. [19] ---, 'Spectral correlation of modulated signals: Part I - Analog modulation,' IEEE Transcations on Communication, vol. COMM-35, pp. 584-594, June 1987. [20] W. A. Gardner, W. A. Brown, III, and C.-K. Chen, 'Spectral correlation of modulated signals: Part II - Digital modulation,' IEEE Transcations on Communication, vol. COMM-35, pp. 595-601, June 1987. [21] G. Xu and T. Kailath, 'Direction-of-arrival estimation via exploitation of cyclostationarity|a combination of temporal and spatial ‾ltering,' IEEE Transcations on Signal Processing, vol. 40, no.7, pp. 1775-1785, July 1992. [22] L. Castedo and A. R. Figueiras-Vidal, 'An adaptive beamforming technique based on cyclostationary signal properties,' IEEE Transcations on Signal Processing, vol. 43, pp. 1637-1650, July 1995. [23] S.-J. Yu and J.-H. Lee, 'Adaptive array beamforming for cyclostationary signals,' IEEE Transactions Antennas Propagation, vol. 44, pp. 943-953, July 1996. [24] Q. Wu, K.M. Wong, and R. Ho, 'Fast algorithm for adaptive beamforming of cyclic signals,' IEE Proceedings-Radar, Sonar and Navigation, vol. 141, pp. 312-318, Dec. 1994. [25] J. Cui, D. D. Falconer, and A. U. H. Sheikh, 'Blind adaptation of antenna arrays using a simple algorithm based on small frequency offsets,' IEEE Transactions on Communications, vol. 46, pp. 61-70, Jan. 1998. [26] T. Biedka, 'Subspace-constrained SCORE algorithms,' Proceedings of 27th Asilomar Conference on Signals, Systems and Computers, Paci‾c Grove, CA, pp. 716-720, 1993. [27] L. Castedo, C. Tseng, and L. Gri±ths, 'A new cost function for adaptive beamforming using cyclostationary signal properties,' Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 4, pp. 284-287, 1993. [28] L. Castedo and C. Tseng, 'Behavior of adaptive beamformers based on cyclostationary signal properties in multipath environments,' Proceedings of 27th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, vol. 1, pp. 653-657, 1993. [29] B. G. Agee, S. V. Schell, and W. A. Gardner, 'Spectral self-coherence restoral: a new approach to blind adaptive signal extraction using antenna arrays,' Proceedings of the IEEE, vol. 78, pp. 753-767, Apr. 1990. [30] Q. Wu and K. M. Wong, 'Blind adaptive beamforming for cyclostationary signals,' IEEE Transcations on Signal Processing, vol. 44, pp. 2757-2767, Nov. 1996. [31] K.-L. Du and M. N. S. Swamy, 'A class of adaptive cyclostationary beamforming algorithms,' Circuits, Systems, and Signal Processing, vol. 27, no. 1, pp. 35-63, Jan. 2008. [32] L. Chang and C. C. Yeh, 'Performance of DMI and eigenspace-based beamformers,' IEEE Transactions Antennas Propagation, vol. AP-40, no. 11, pp. 1336-1347, Nov. 1992. [33] G. Xu and T. Kailath, 'Fast subspace decomposition,' IEEE Transcations on Signal Processing, vol. 42, no. 3, pp. 539-551, Mar. 1994. [34] G. Xu, Y. Cho, T. Kailath, 'Application of fast subspace decomposition to signal processing and communication problems,' IEEE Transcations on Signal Processing, vol. 42, no. 6, pp. 1453-1459, June 1994. [35] M. Wax and T. Kailath, 'Detection of signals by information theoretic criteria,' IEEE Transactions on Acoustics, Speech and Signal Processing, vol. ASSP-33, pp. 387-392, April 1985. [36] P. Chen, M. C. Wicks, and R. S. Adve, 'Development of a statistical procedure for detecting the number of signals in a radar measurement,' IEE Proceedings-Radar, Sonar and Navigation, vol. 148, no. 4, pp. 219-226, Aug. 2001. [37] D.S. Watkins, Fundamentals of Matrix Computations, Wiley, 1991. [38] J.-H. Lee, and C.-C. Huang, 'Blind adaptive beamforming for cyclostationary signals: a subspace projection approach,' IEEE Antennas and Wireless Propagation Letters, vol. 8 , pp. 1406-1409, Dec. 2009. [39] J. T. Mayhan, 'Area coverage adaptive nulling from geosynchronous satellites: phased arrays versus multiple-beam antennas,' IEEE Transactions on Antennas Propagation, vol. AP-34, pp. 410-419, Mar. 1986. [40] K. -B. Yu, 'Adaptive beamforming for satellite communication with selective earth coverage and jammer nulling capability,' IEEE Transcations Signal Processing, vol. 44, no. 12, pp. 3162-3166, Dec. 1996. [41] A.V. Dandawat¶e and G.B. Giannakis, 'Statistical tests for presence of cyclostationarity,' IEEE Transcations on Signal Processing, vol. 42, no. 9, pp. 2355-2369, Sep., 1994. [42] Y. Li, Y.-J. Gu, Z.-G. Shi, and K. S. Chen, 'Robust adaptive beamforming based on particle ‾lter with noise unknown,' Progress In Electromagnetics Research, PIER 90, pp. 151-169, 2009. [43] W. Wang, R. Wu, and J. Liang, 'A novel diagonal loading method for robust adaptive beamforming,' Progress In Electromagnetics Research C, vol. 18, pp. 245-255, 2011. [44] C.-C Huang and J.-H. Lee, 'Adaptive array beamforming using signal cyclostationarity and ‾nite data,' Progress In Electromagnetics Research C, vol. 21, pp. 217-228, May 2011. [45] J.-H. Lee and Y.-T. Lee, 'Robust adaptive array beamforming for cyclostationary signals under cycle frequency error,' IEEE Transactions Antennas Propagation, vol. 47, no. 2, pp. 233-241, Feb. 1999. [46] J.-H. Lee, Y.-T. Lee, and W.-H. Shih, 'Effcient robust adaptive beamforming for cyclostationary signals,' IEEE Transcations on Signal Processing, vol. 48, no. 7, pp. 1893-1900, Jul. 2000. [47] J. Zhang, G. Liaoa, and J.Wang, 'Robust direction ‾nding for cyclostationary signals with cycle frequency error,' Signal Processing, vol 85, issue 12, pp. 2386-2393, Dec. 2005. [48] C.-C Huang and J.-H. Lee, 'Robust cyclic adaptive beamforming using a compensation method,' Signal Processing, vol. 92, no. 4, pp. 954-962, April 2012. [49] J.-H. Lee and C.-C. Huang, 'Robust adaptive beamforming for multiple signals of interest with cycle frequency error,' EURASIP Journal on Advances in Signal Processing, vol. 2010, pp. 1-7, Dec. 2010. [50] J.-H. Lee, 'Robust antenna array beamforming under cycle frequency mismatch,' Progress In Electromagnetics Research B, vol. 35, pp. 307-328, Nov. 2011. [51] Y.-T. Lee and J.-H. Lee,'Robust adaptive array beamforming with random error in cycle frequency,' IEE Proceedings-Radar, Sonar and Navigation, vol. 148, no. 4, pp. 193-199, Aug. 2001. [52] Gibra I. N., Probability and statistical inference for scientists and enginccrs, Prcnticc Hall, 1973. [53] S. Shahbazpanabi, A. B. Gershman, Z-Q. Luo, and K. M. Wong, 'Robust adaptive beamforming for general-rank signal models,' IEEE IEEE Transcations on Signal Processing, vol. 51, no.9 , pp. 2257-2269, Sept. 2003. [54] B. D. Carlson, 'Covariance matrix estimation errors and diagonal loading in adaptive arrays,' IEEE Transactions on Aerospace and Electronic Systems, vol. 24, pp. 397-401, July 1988. [55] M. Wax and Y. Anu, 'Performance analysis of the minimum variance beamformer,' IEEE Transcations on Signal Processing, vol. 44, pp. 928-937, April 1996. [56] ---, 'Performance analysis of the minimum variance beamformer in the presence of steering vector errors,' IEEE Transcations on Signal Processing, vol. 44, pp. 938-947, April 1996. [57] D. D. Feldman and L. J. Gri±ths, 'A projection approach for robust adaptive beamforming,' IEEE Transcations on Signal Processing, vol. 42, pp. 867-876, April 1994. [58] H. Cox, R. M. Zeskind, and M. H. Owen, 'Robust adaptive beamforming,' IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 35, pp. 1365-1376, Oct. 1987. [59] F. Vincent and O. Besson, 'Steering vector errors and diagonal loading,' IEE Proceedings-Radar, Sonar and Navigation, vol. 151, no. 6, pp. 337-343, Dec. 2004. [60] L. Jian, P. Stoica, and Z. Wang, 'On Robust Capon Beamforming and Diagonal Loading,' IEEE Transcations on Signal Processing, vol. 51, no. 7, pp. 1702-1715, July 2003. [61] S. A. Vorobyov, A. B. Gershman, and Z.-Q. Luo, 'Robust adaptive beamforming using worst-case performance optimization: a solution to the signal mismatch problem,' IEEE Transcations on Signal Processing, vol. 51, pp. 313-324, Feb. 2003. [62] J. Gu, 'Robust Beamforming Based on Variable Loading,' Electronics Letters, vol. 41, no. 2, Jan. 2005. [63] J. Gu and P. J.Wolfe, 'Robust adaptive beamforming using variable loading,' Fourth IEEE Workshop on Sensor Array and Multichannel Processing, pp. 1-5, July 2006. [64] Y. Sel¶en, R. Abrahamsson, and P. Stoica, 'Automatic robust adaptive beamforming via ridge regression,' Signal Processing, vol. 88, no. 1, pp. 33-49, 2008. [65] J. Li, L. Du, and P. Stoica, 'Fully automatic computation of diagonal loading levels for robust adaptive beamforming,' IEEE Transactions on Aerospace and Electronic Systems, vol. 46, no. 1, 449-458, Jan. 2010. [66] J. Yang, X. H. Ma, C. H. Hou, and Y. Liu, 'Automatic generalized loading for robust adaptive beamforming,' IEEE Signal Processing Letters, vol. 16, no. 3, pp. 219-222, March 2009. [67] L. Du, T. Yardibi, J. Li, and P. Stoica, 'Review of user parameter-free robust adaptive beamforming algorithms,' Digital Signal Processing, vol. 19, no. 4, pp. 567-582, July 2009. [68] O. Besson and F. Vincent, 'Performance analysis of beamformers using generalized loading of the covariance matrix in the presence of random steering vector errors,' IEEE Transcations on Signal Processing, vol. 53, pp. 452-459, Feb. 2005. [69] L. Yu, W. Liu, and R. Langley, 'SINR analysis of the subtraction-based SMI beamformer,' IEEE Transcations on Signal Processing, vol. 58, no. 11, pp. 5926-5932 , Nov. 2010. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65581 | - |
| dc.description.abstract | 可適性陣列波束成型能自動截取信號同時抑止干擾與雜訊,在諸多應用領域中早已深受重視。就傳統可適性波束成型技術而言,事先所必備的資訊非信號的波形即信號的指引向量。近二十幾年來,已有諸多文獻在探討利用信號循環平穩特性的可適性陣列波束成型技術。相比之下,循環可適性波束成型技術不需要信號的波形或指引向量等資訊故可用來實現盲可適性波束成型。本論文主要的目的在於發展多種有效且強健的循環可適性波束成型技術。在傳統可適性波束成型方面,吾人也提出兩種新穎強健的技術。
在本論文中,吾人探討存在有限取樣點效應之循環可適性波束成型。為了對抗有限取樣點效應,吾人首先提出一種估測誤差的模型來表示由有限取樣點效應所造成的擾動,此擾動為理想循環自相關向量與樣本循環自相關向量之間的誤差。接著,吾人提出子空間投影和基於對角線負載等方法來消除此擾動。此外,吾人也提出一種新的方案將上述方法延伸至多信號的環境。為了達到更快的收斂速度,吾人根據Capon的方法提出另一種新的循環波束成型技術,其中吾人利用一個和信號循環平穩特性相關的約束以及接收信號的自相關矩陣之信號子空間來計算權重向量。 由於實現循環可適性波束成型事先所必備的資訊只有信號的週期頻率,吾人分析週期頻率誤差對效能所產生之影響。針對週期頻率誤差,吾人提出一種補償的方法,用一個補償矩陣重建循環相關矩陣以對抗其最大奇異值之退化。在多信號的環境中,吾人提出一種高效強健的方法用以同時估測所有信號的週期頻率,也對該方法之收斂特性進行分析。另一方面,吾人建立了循環自相關向量在隨機週期頻率誤差下的統計模型。隨即發展一套強健的作法來解決隨機週期頻率誤差的問題並且進一步推導出解析公式來評估此作法之效能。 對傳統指引式波束成型器而言,其可適性權重是經由最小化波束成型器的輸出在受到陣列在信號方向的響應不變的限制條件下獲得。故此波束成型器對指引向量的精確度十非敏感。為了解決指引向量不匹配的難題,吾人提出兩種變形的對角線負載的作法,對接收信號的自相關矩陣之最不顯著的特徵值提供較大的負載因子而最顯著的特徵值則提供較小的負載因子。較之傳統對角線負載的作法,吾人所提之作法具有顯著的優點以及強健性來對抗指引向量不匹配的難題。 | zh_TW |
| dc.description.abstract | Adaptive array beamforming, which can automatically extract signal of interest (SOI) while suppressing signal not of interest (SNOI) and noise, has received much attention in several application areas. For conventional adaptive array beamforming, the a priori information required for adapting the weights is either the waveform or the direction of the SOI. Over the past two decades, adaptive array beamforming utilizing signal cyclostationarity has been widely presented in the literature. In contrast, the cyclostationarity-exploiting (cyclic) adaptive beamforming techniques do not require any priori information about the waveform or the direction according to the SOI and thus achieve blind adaptive beamforming. The purpose of this dissertation is
mainly to develop several efficient and robust techniques for cyclic adaptive beamforming. We also present two novel robust techniques for conventional adaptive beamforming. In this dissertation, we consider the cyclic adaptive beamforming in the presence of error due to the effect of using finite data samples. To cope with the finite sample effect, we first present an estimation error model to represent the perturbation due to finite sample effect on the sample cyclic correlation vector. The sample cyclic correlation vector plays a key role required for adapting the weights of the least-squares spectral self-coherence restoral (LS-SCORE) algorithm. Then, two efficient methods, namely the subspace projection and loading-based methods, are proposed to eliminate the perturbation. Moreover, a novel scheme to extend the aforementioned methods to deal with the situation of multiple SOIs is also presented. To achieve faster convergence rate, we present a new cyclic beamforming method based on the well-known Capon method. In the proposed method, the adaptive weights are obtained by using a constraint related to the signal cyclostationarity and the signal subspace of the received data correlation matrix. Since the a priori information required by performing cyclic adaptive beamforming is only the cycle frequency of the SOI, we analyze the performance degradation of the cyclic adaptive beamforming in the presence of cycle frequency error (CFE). We present a compensation method to reconstruct the cyclic correlation matrix by using a compensation matrix to cope with the deterioration of its dominant singular value when CFE exists. To further deal with the situation of multiple SOIs with CFE, an efficient robust method is proposed to simultaneously estimate the actual cycle frequencies of the SOIs and its convergence property is also evaluated. On the other hand, we also establish the statistical model of the cyclic correlation vector under random CFE (RCFE). A robust method is developed to tackle the problem due to RCFE and analytical formulas for evaluating the performance of this robust method are further derived. For a steered-beam adaptive beamformer, the adaptive weights are calculated by minimizing the beamformer's output power subject to the constraint that forces the array to make a constant response in the direction of the SOI. Hence, the performance of the beamformer is very sensitive to the accuracy of the steering vector of the SOI. To alleviate the difficulty due to steering vector mismatch, we present two variations of the diagonal loading (DL) approaches. The proposed approaches provide large loading factors for the least significant eigenvalues of the received data correlation matrix and small ones for the most significant eigenvalues. This is a significant advantage over the conventional DL methods and achieves significant robustness against the above mentioned difficulty. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T23:51:51Z (GMT). No. of bitstreams: 1 ntu-101-D97942023-1.pdf: 1478529 bytes, checksum: b163d5a0381c7fb1a5ebddd712f58b66 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | Contents
1 Introduction 1 1.1 Motivation and Historical Perspective . . . . . . . 1 1.2 Organization of the Dissertation . . . . . . . . . . 4 2 Mathematical Preliminaries 8 2.1 Data Model . . . . . . . . . . . . . . . . . . . . . 8 2.2 Conventional Adaptive Beamforming . . . . . . . . . 11 2.3 Cyclic Adaptive Beamforming . . . . . . . . . . . . 12 2.3.1 Signal Cyclostationarity . . . . . . . . . . . . . 12 2.3.2 The SCORE Algorithms . . . . . . . . . . . . . . . 15 2.3.3 The CAB Algorithms . . . . . . . . . . . . . . . . 17 3 Cyclic Adaptive Beamforming: A Subspace Projection Approach 19 3.1 Introduction . . . . . . . . . . . . . . . . . . . . 19 3.2 Problem Formulation . . . . . . . . . . . . . . . . 20 3.3 The Proposed Method . . . . . . . . . . . . . . . . 21 3.4 Extension to the Case with Multiple SOIs . . . . . . 23 3.5 Simulation Examples . . . . . . . . . . . . . . . . 26 3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . 27 4 Cyclic Adaptive Beamforming with an Analytical Loading 30 4.1 Introduction . . . . . . . . . . . . . . . . . . . . 30 4.2 The Proposed Method . . . . . . . . . . . . . . . . 32 4.3 Simulation Examples . . . . . . . . . . . . . .. . . 35 4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . 37 5 Cyclic Adaptive Beamforming Using a Constraint Related to Signal Cyclostationarity 41 5.1 Introduction . . . . . . . . . . . . . . . . . . . 41 5.2 Existing Cyclic Beamforming . . . . . . . . . . . . 42 5.3 The Proposed Method . . . . . . . . . . . . . . . . 43 5.4 Simulation Examples . . . . . . . . . . . . . . . . 47 5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . 49 6 Robust Cyclic Adaptive Beamforming Using a Compensation Method 54 6.1 Introduction . . . . . . . . . . . . . . . . . . . . 54 6.2 Preliminaries . . . . . . . . . . . . . . . . . . . 56 6.2.1 Performance Analysis Under CFE . . . . . . . . . 56 6.2.2 The Averaged Cyclic Correlation Matrix Algorithm . 58 6.2.3 The E±cient Robust Adaptive Beamforming Algorithm 59 6.3 The Proposed Compensation Algorithm . . . . . . . .. 60 6.4 Simulation Examples . . . . . . . . . . . . . . . .. 64 6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . 67 7 Robust Cyclic Adaptive Beamforming for Multiple SOIs with Cycle Frequency Error 72 7.1 Introduction . . . . . . . . . . . . . . . . . . . . 72 7.2 Performance Analysis . . . . . . . . . . . . . . . 73 7.3 The Proposed Method . . . . . . . . . . . . . . . . 76 7.4 Convergence Analysis . . . . . . . . . . . . . . . . 79 7.5 Simulation Examples . . . . . . . . . . . . . . . . 83 7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . 85 8 Robust Cyclic Beamforming Under Random Cycle Frequency Er- ror 88 8.1 Introduction . . . . . . . . . . . . . . . . . . . . 88 8.2 Problem Formulation . . . . . . . . . . . . . . .. . 89 8.3 Existing Robust Methods . . . . . . . . . . . . . . 90 8.3.1 Subspace Projection Method . . . . . . . . . . . . 90 8.3.2 Conventional Method . . . . . . . . . . . . . . . 91 8.4 The Proposed Method . . . . . . . . . . . . . .. . . 91 8.5 Performance Analysis . . . . . . . . . . . . . . . . 95 8.6 Simulation Examples . . . . . . . . . . . . . . . . 98 8.7 Conclusion . . . . . . . . . . . . . . . . . . . . 101 Appendix 8-A . . . . . . . . . . . . . . . . . . . . . . 109 9 Robust Adaptive Beamforming with a Generalized Variable Loading 111 9.1 Introduction . . . . . . . . . . . . . . . . . . . . 111 9.2 Problem Formulation . . . . . . . . . . . . . . . . 112 9.3 Diagonal Loading and Variable Loading . . . . . . . 113 9.4 The Proposed Method . . . . . . . . .. . . . . . . . 114 9.5 Simulation Examples . . . . . . .. . . . . . . . . . 117 9.6 Conclusion . . . . . . . . . . . . . . . . . . . . . 119 10 Robust Adaptive Beamforming Using a Fully Data-Dependent Loading Technique 127 10.1 Introduction . . . . . . . . . . . . . . . . . . . 127 10.2 Problem Formulation . . . . . . . . . . . . . . . . 130 10.3 The Parameter-Free Methods . . . . . . . . . . . . 131 10.4 The Proposed Method . . . . . . . . . . . . . . . . 133 10.4.1 Concept of Fully Data-Dependent Loading . . . . . 134 10.4.2 General Formulation of Fully Data-Dependent Loading . . . 135 10.5 Performance Analysis . . . . . . . . . .. . . . . . 137 10.6 Simulation Examples . . . . . . . . . . . . . . . . 142 10.7 Conclusion . . . . . . . . . . . . . . .. . . . . . 145 11 Conclusions and Future Work 154 | |
| dc.language.iso | en | |
| dc.subject | 週期頻率誤差 | zh_TW |
| dc.subject | 對角線負載 | zh_TW |
| dc.subject | 可適性波束成型 | zh_TW |
| dc.subject | 循環平穩信號 | zh_TW |
| dc.subject | CFE | en |
| dc.subject | Adaptive beamforming | en |
| dc.subject | cyclostationary signals | en |
| dc.subject | SCORE | en |
| dc.subject | diagonal loading | en |
| dc.title | 在不匹配情境下的可適性陣列波束成型技術 | zh_TW |
| dc.title | Techniques for Adaptive Array Beamforming Under Scenario Mismatch | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 方文賢,祁忠勇,李大嵩,陳巽璋,劉玉蓀 | |
| dc.subject.keyword | 可適性波束成型,循環平穩信號,週期頻率誤差,對角線負載, | zh_TW |
| dc.subject.keyword | Adaptive beamforming,cyclostationary signals,SCORE,CFE,diagonal loading, | en |
| dc.relation.page | 169 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-07-20 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 1.44 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
