請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65573
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 圳塗許(Chou-Tou Shii),萬興鄭(Wan-Hsing Cheng) | |
dc.contributor.author | Hung-Chi Chen | en |
dc.contributor.author | 陳鴻吉 | zh_TW |
dc.date.accessioned | 2021-06-16T23:51:20Z | - |
dc.date.available | 2012-08-01 | |
dc.date.copyright | 2012-08-01 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-07-20 | |
dc.identifier.citation | 1. 吳淑華. 2001. 基因型、滲透壓劑、ABA及Fluridone對百合微體繁殖小鱗莖葉片形態發育之影響. 國立台灣大學園藝研究所 碩士論文.
2. 姚敦義. 1994. 葉的形態發生. 植物形態發生學. 高等教育出版社. p.145-157. 3. 許圳塗. 1978. 台灣原生百合生長習性及栽培利用之研究. 國立台灣大學園藝系編印. 4. 許圳塗、金石文、阮明淑. 2002. 百合. 實用花卉栽培技術專輯(五). 財團法人台灣區花卉發展協會出版. 5. 許圳塗、金石文、陳世賢. 1996. 鐵炮型百合種質遺傳特性及其在育種利用發展. 球根花卉產業研討會專輯:76-87. 台灣省政府農林廳種苗改良繁殖場編印. 6. 陳孝銘. 2003. 外加Abscisic acid, Osmotica及Fluridone對百合組培苗小鱗莖葉片發育型之影響. 國立台灣大學園藝研究所 碩士論文. 7. 戴廷恩. 2004. 原生鐵炮型百合形態變異、遺傳歧異及早熟相關葉片形態之研究. 國立台灣大學園藝研究所 博士論文. 8. 鄭免. 1983. 台灣百合實生苗簇生習性及影響生長發育因子之研究. 國立台灣大學園藝研究所 碩士論文. 9. Aguettaz, P. et al. 1990. The development of dormancy in bulblets of Lilium speciosum generated in vitro. Plant Cell, Tiss. Org. Cult. 22:167-172. 10. Akaba, S. et al. 1998. Aldehyde oxidase in wild type and aba1 mutant leaves of Nicotiana plumbaginifolia. Plant Cell Physiol. 39:1281-1286. 11. Arenas-Huertero, F. et al. 2000. Analysis of Arabidopsis glucose insensitive mutants, gin5 and gin6, reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugar. Genes Dev. 14:2085–2096. 12. Barthe, P. et al. 2000. Oxygen availability and ABA metabolism in Fagus sylvatica seeds. Plant Growth Regul. 30:185-191. 13. Borghi, L. et al. 2010. Arabidopsis RETINOBLASTOMA-RELATED is required for stem cell maintenance, cell differentiation, and lateral organ production. Plant Cell 22:1792-1811. 14. Burbidge, A. et al. 1999. Characterization of the ABA-deficient tomato mutant notabilis and its relationship with maize VP14. Plant J. 17:427-431. 15. Cheng, W. H. et al. 2002. A Unique Short-Chain Dehydrogenase/Reductase in Arabidopsis Glucose Signaling and Abscisic Acid Biosynthesis and Functions. Plant Cell 14:2723-2743. 16. Chernys, J. T. and J. A. D. Zeevaart. 2000. Characterization of the 9-cis-epoxycarotenoid dioxygenase gene family and the regulation of abscisic acid biosynthesis in avocado. Plant Physiol. 124:343-353. 17. Chiu, L. W. et al. 2010. The purple cauliflower arises from activation of a MYB transcription factor. Plant Physiol. 154:1470-1480. 18. Clough, S. J. and A. F. Bent. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16:735-743. 19. Cook, C. D. K. 1990. Aquatic Plant Book The Hague: SPB Academia Publishing. p.228. 20. Cowan, A. K. 2000. Is abscisic aldehyde really the immediate precursor to stress-induced ABA? Trends Plant Sci. 5:191-192. 21. Counninghame, M. E. and R. F. Lyndon. 1986. The relationship between the distribution of periclinal cell divisions in the shoot apex and leaf initiation. Ann. Bot. 57:737-746. 22. Cutler, A. J. and J. E. Krochko. 1999. Formation and breakdown of ABA. Trends Plant Sci. 4:472-478. 23. Dall’Osto, L. et al. 2007. The Arabidopsis aba4-1 mutant reveals a specific function for neoxanthin in protection against photooxidative stress. Plant Cell 19:1048-1064. 24. De Hetrigh, A. A. et al. 1971. A guide to terminology for the Easter lily (Lilium longiflorum Thunb.). HortScience 6:121-123. 25. Déjardin, A. et al. 1999. Sugar/osmoticum levels modulate differential abscisic acid-independent expression of two stress-responsive sucrose synthase genes in Arabidopsis. Biochem. J. 344:503–509. 26. De Klerk, G. J. et al. 1992. Growth of bulblets of Lilium speciosum in vitro and in soil. Acta Hort. 325:513-520. 27. Dixon, S. C. et al. 1989. Zeatin glycosylation enzymes in Phaseolus: isolation of O-glucosyltransferase from P. lunatus and comparison to O-xylosyltransferase from P. vulgaris. Plant Physiol. 90:1316–1321. 28. Duckham, S. C. et al. 1991. Abscisic acid-deficient mutants at the aba gene locus of Arabidopsis thaliana are impaired in the epoxidation of zeaxanthin. Plant Cell Environ. 14:601-606. 29. Eckardt, N. A. 2002. Abscisic acid biosynthesis gene underscores the complexity of sugar, stress, and hormone interactions. Plant Cell 14:2645-2649. 30. Endo, A. et al. 2008. Drought induction of Arabidopsis 9-cis-epoxycarotenoid dioxygenase occurs in vascular parenchyma cells. Plant Physiol. 147:1984-1993. 31. Frary, A. et al. 2000. fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85-88. 32. Gerrits, M. M. et al. 1992. Hormonal control of Dormancy in bulblets of Lilium speciosum cultured in vitro. Acta Hort. 325:521-527. 33. Ghassemian, M. et al. 2002. Regulation of abscisic acid signaling by the ethylene response pathway in Arabidopsis. Plant Cell 12:1117-1126. 34. Gillard, D. F. and D. C. Walton. 1976. Abscisic acid metabolism by a cell-free preparation from Echinocystic lobata liquid endosperm. Plant Physiol. 58:790-795. 35. González-Guzmán, M. et al. 2002. The short-chain alcohol dehydrogenase ABA2 catalyzes the conversion of xanthoxin into abscisic aldehyde. Plant Cell 14:1833-1846. 36. Grassotti, A. 1997. The effects of scale incubation temperature treatments on number and growth of regenerated bulblets, to reduce production time of commercial lily bulbs. Acta Hort. 430:221-226. 37. Helsley, C. 1983. New classification of Lilium species. N. A. L. S. Year Book. 36:67-72. 38. Hirai, N. et al. 2000. Biosynthesis of abscisic acid by the non-mevalonate pathway in plants, and by the mevalonate pathway in fungi. Biosci. Biotechnol. Biochem. 64:1448-1458. 39. Hsu, T. C. et al. 2001. Early genes responsive to abscisic acid during heterophyllous induction in Marsilea quadrifolia. Plant Mol. Biol. 47:703-715. 40. Hutchinson, J. 1973. The Families of Flowering Plant. Oxford University Press. London. U. K. p.968. 41. Hwang, S. G. et al. 2010. Ectopic expression of rice OsNCED3 in Arabidopsis increases ABA level and alters leaf morphology. Plant Sci. 178:12-22. 42. Iuchi, S. et al. 2000. A stress-inducible gene for 9-cis-epoxycarotenoid dioxygenase involved in abscisic acid biosynthesis under water stress in drought-tolerant cowpea. Plant Physiol. 123:553-562. 43. Iuchi, S. et al. 2001. Regulation of drought tolerance by gene manipulation 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J. 27:325-333. 44. Karssen, C. M. et al. 1983. Induction of dormancy during seed development by endogenous abscisic acid: studies on abscisic acid deficient genotypes of Arabidopsis thaliana (L.) Heynh. Planta 157:158-165. 45. Kim, K. S. et al. 1994. Abscisic acid controls dormancy development and bulb formation in lily plantlets regenerated in vitro. Physiol. Plant. 90:59-64. 46. Kushiro T. et al. 2004. The Arabidopsis cytochrome P450 CYP707A encodes ABA 8’-hydroxylases: key enzymes in ABA catabolism. EMBO J. 23:1647-1656. 47. Kuwabara, A. et al. 2001. Identification of factors that cause heterophylly in Ludwigia arcuata Walt. (Onagraceae). Plant Biol. 3:98-105. 48. Kuwabara, A. et al. 2003. Effects of ethylene and abscisic acid upon heterophylly in Ludwigia arcuata (Onagraceae). Planta 217:880-887. 49. Laby, R. J. et al. 2000. The Arabidopsis sugar-insensitive mutants sis4 and sis5 are defective in abscisic acid synthesis and response. Plant J. 23:587-596. 50. Léon-Kloosterziel, K. M. et al. 1996. Isolation and characterization of abscisic acid-deficient Arabidopsis mutants at two new loci. Plant J. 10:655-661. 51. Leznicki, A. J. and R. S. Bandurski. 1988a. Enzymic synthesis of indole-3-acetyl-1-O-β-d-glucose: I. Partial purification and characterization of the enzyme from Zea mays. Plant Physiol. 88:1474–1480. 52. Leznicki, A. J. and R. S. Bandurski. 1988b. Enzymic synthesis of indole-3-acetyl-1-O-β-d-glucose: II. Metabolic characteristics of the enzyme. Plant Physiol. 88:1481–1485. 53. Lin, B. L. and W. J. Yang. 1999. Blue light and abscisic acid independently induce Heterophyllous switch in Marsilea quadrifolia. Plant Physiol. 119:429-434. 54. Lin, P. C. et al. 2007. Ectopic expression of ABSCISIC ACID 2/GLUCOSE INSENSITIVE 1 in Arabidopsis promotes seed dormancy and stress tolerance. Plant Physiol. 143:745-758. 55. Luehrsen, K. R. et al. 1992. Transient expression analysis in plants using the firefly luciferase reporter gene. Meth. Enzymol. 216:397-414. 56. Marin, E. et al. 1996. Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana. EMBO J. 15:2331-2342. 57. Marin, E. and A. Marion-Poll. 1996. Tomato flacca mutant is impaired in ABA aldehyde oxidase and xanthine dehydrogenase activities. Plant Physiol. Biochem. 35:369-372. 58. Martin, R. C. et al. 1999. Isolation of a cytokinin gene, ZOG1, encoding zeatin O-glucosyltransferase from Phaseolus lunatus. Proc. Natl. Acad. Sci. U. S. A. 96:284-289. 59. Matsuo, E. and J. M. van Tuyl. 1984. Effect of bulb storage temperature on leaf emergence and plant development during scale propagation of Lilium longiflorum 'White American'. Sci. Hortic. 24:59-66. 60. Milborrow, B. V. 2001. The pathway of biosynthesis of abscisic acid in vascular plant: a review of the present state of knowledge of ABA biosynthesis. J. Exp. Bot. 52:1145-1164. 61. Miller, W. B. 1993. Lilium longiflorum. Physiology of Flower bulbs. p.391-422. 62. Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant. 15:473-497. 63. Nambara, E. and A. Marion-Poll. (2005) Abscisic acid biosynthesis and catabolism. Annu. Rev. Plant Biol. 56:165-185. 64. Niyogi, K. K. et al. 1998. Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. Plant Cell 10:1121-1134. 65. Neill, S. J. et al. 1998. Cloning of a wilt-responsive cDNA from an Arabidopsis thaliana suspension culture cDNA library that encodes a putative 9-cis-epoxy-carotenoid dioxygenase. J. Exp. Bot. 49:1893-1894. 66. North, H. M. et al. 2007. The Arabidopsis ABA-deficient mutant aba4 demonstrate that the major route for stress-induced ABA accumulation is via neoxanthin isomers. Plant J. 50:810-824. 67. Nesbitt, T. C. and S. D. Tanksley. 2002. Comparative sequencing in the genus Lycopersicon: implication for the evolution of fruit size in the domestication of cultivated tomatoes. Genetics 162:365-379. 68. Paffen, A. M. G. et al. 1990. The development of dormancy in lily bulblets generated in vitro. Acta Hort. 266:51-58. 69. Park, N. B. 1996. Effect of temperature, scale position, and growth regulators on the bulblet formation and growth during scale propagation of Lilium. Acta Hort. 414:257-262. 70. Poethig, R. S. 1997. Leaf morphogenesis in flowering plants. Plant Cell 9:1077-1087. 71. Qin, X. and J. A. D. Zeevaart. 1999. The 9-cis-epoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water-stressed bean. Proc. Natl. Acad. Sci. U. S. A. 96:15354-15361. 72. Ramirez-Parra, E. et al. 2003. A genome-wide identification of E2F regulated genes in Arabidopsis. Plant J. 33:801-811. 73. Rock, C. D. et al. 1991. Abscisic alcohol is an intermediate in abscisic acid biosynthesis in a shunt pathway from abscisic aldehyde. Plant Physiol. 97:670-676. 74. Rock, C. D. and J. A. D. Zeevaart. 1991. The aba mutant of Arabidopsis thaliana is impaired in epoxy-carotenoid biosynthesis. Proc. Natl. Acad. Sci. U. S. A. 88:7496-7499. 75. Rodríguez-Concepción, M. and A. Boronat. 2002. Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant Physiol. 130:1079–1089. 76. Rook, F. et al. 2001. Impaired sucrose-induction mutants reveal the modulation of sugar-induced starch biosynthetic gene expression by abscisic acid signaling. Plant J. 26:421-433. 77. Sagi, M. et al. 2001. The absence of molybdenum cofactor sulfuration is the primary cause of the flacca phenotype in tomato plants. Plant J. 31:305-317. 78. Saito S. et al. 2004. Arabidopsis CYP707As encode (+)-abscisic acid 8’-hydroxylase, a key enzyme in the oxidative catabolism of abscisic acid. Plant Physiol. 134:1439-1449. 79. Schwartz, S. H. et al. 1997a. Biochemical characterization of the aba2 and aba3 mutants in Arabidopsis thaliana. Plant Physiol. 114:161-166. 80. Schwartz, S. H. et al. 1997b. Specific oxidative cleavage of carotenoids by VP14 of maize. Science 276:1872-1874. 81. Seo, M. et al. 1998. Higher activity of an aldehyde oxidase in the auxin-overproducing superroot1 mutant of Arabidopsis thaliana. Plant Physiol. 116:687-693. 82. Seo, M. et al. 2000a. Abscisic aldehyde oxidase in leaves of Arabidopsis thaliana. Plant J. 23:481-488. 83. Seo, M. et al. 2000b. The Arabidopsis aldehyde oxidase 3 (AAO3) gene product catalyzes the final step in abscisic acid biosynthesis in leaves. Proc. Natl. Acad. Sci. U. S. A. 97:12908-12913. 84. Seo, M. et al. 2004. Comparative studies on the Arabidopsis aldehyde oxidase (AAO) gene family revealed a major role of AAO3 in ABA biosynthesis in seeds. Plant Cell Physiol. 45:1694-1703. 85. Shii, C. T. 1983. The distribution and variation of Lilium formosanum. Wall. and L. Longiflorum Thunb. in Taiwan. N. A. L. S. Year Book. 36:48-51. 86. Smith, L. G. and S. Hake. 1992. The initiation and determination of leaves. Plant Cell 4:1017-1027. 87. Suh, J. K. and J. S. Lee. 1996. Bulblet formation and dormancy induction as influenced by temperature, growing media and light quality during scaling propagation of Lilium species. Acta Hort. 414:251-256. 88. Szerszen, J. B. et al. 1994. iaglu, a gene from Zea mays involved in the conjugation of growth hormone indole-3-acetic acid. Science 265:1699-1701. 89. Takayama, S. and M. Misawa. 1980. Differentiation in Lilium bulbscales grown in vitro. Effects of activated charcoal, physiological age of bulbs and sucrose concentration on differentiation and scale leaf formation in vitro. Physiol. Plant. 48:121-125. 90. Tan, B. C. et al. 1997. Genetic control of abscisic acid biosynthesis in maize. Proc. Natl. Acad. Sci. USA. 94:12235-12240. 91. Tan, B. C. et al. 2003. Molecular characterization of the Arabidopsis 9-cis epoxycarotenoid dioxygenase gene family. Plant J. 35:44-56. 92. Taylor, H. F. and T. A. Smith. (1967) Production of plant growth inhibitors from xanthophylls: a possible source of dormin. Nature 215:1513-1514. 93. Trimarchi, T. M. and J. A. Lees. (2002) Sibling rivalry in the E2F family. Nat. Rev. Mol. Cell Biol. 3:11-20. 94. Van Aartrijk, J. et al. 1990. Lilies. Handbook of plant cell culture. p.535-576. 95. Vandepoele, K. et al. 2002. Genome-wide analysis of core cell cycle genes in Arabidopsis. Plant Cell 14:903-916. 96. Van Tuyl, J. M. 1983. Effect of temperature treatments on the scale propagation of Lilium longiflorum ‘White Europe’ and Lilium × ‘Enchantment’. HortScience 18:754-756. 97. Van Tuyl, J. M. et al. 1991. Application of in vitro pollination, ovary culture, ovule culture and embryo rescue for overcoming incongruity barriers in interspecific Lilium crosses. Plant Sci. 74:115-126. 98. Van Tuyl J. M. et al. 2000. Breakthroughs in interspecific hybridization of lily. Acta Hort. 508:83-88. 99. Varshney, A. et al. 2000. A protocol for in vitro mass propagation of Asiatic hybrids of lily through liquid stationary culture. In Vitro Cell. Dev. Biol.-Plant 36:383-391. 100. Wilkins, H. F. and J. M. Dole. 1997. The physiology of flowering in Lilium. Acta Hort. 430:183-187. 101. Xiong, L. et al. 2001. The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress- and osmotic stress-responsive gene expression. Plant Cell 13:2063-2083. 102. Xu, Z. J. et al. 2002. Cloning and characterization of the abscisic acid-specific glucosyltransferase gene from adzuki bean seedlings. Plant Physiol. 129:1285-1295. 103. Zeevaart, J. A. D. 1999. Abscisic acid metabolism and its regulation. In Biochemistry and Molecular Biology of Plant Hormones(Hooykaas, P. J. J. et al., eds), pp. 189-207, Elsevier 104. Zeevaart, J. A. D. and R. A. Creelman. 1988. Metabolism and physiology of abscisic acid. Annu. Rev. Plant Physiol. Plant Mol. Biol. 39:439-473. 105. Zhou, R. et al. 2003. Rapid extraction of abscisic acid and its metabolites for liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 1010:75-85. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65573 | - |
dc.description.abstract | 雖然先前研究報告已指出,外源性離層酸 (abscisic acid, ABA)可調控許多植物的異形葉性;然而,內源性ABA如何調控植物的異形葉性及其分子機制,仍有待進一步釐清。因此,本研究主要以鐵炮型台灣百合 (Lilium formosanum)及東方型香水百合 (Lilium oriental hybrid 'Casa Blanca')兩種不同群種百合為試驗材料,調查ABA對其異形葉型轉換上的影響。結果顯示,簇生苗期呈現鱗片葉生長模式 (scale-leaf-type growth)的鐵炮型台灣百合,其9-cis-epoxycarotenoid dioxygenase 3 (LfNCED3)的轉錄表現較低,且內源性ABA含量較少;而簇生苗期呈現鱗片生長模式 (scale-type growth)的東方型香水百合,則有較高的LoNCED3轉錄表現,並含有較多的內源性ABA含量。高蔗糖逆境誘導內源性ABA生合成的增加,可促使簇生苗期的百合,由鱗片葉生長模式轉變為鱗片生長模式。異質表現LfNCED3或LoNCED3基因於阿拉伯芥Atnced3突變株,皆可矯正其缺陷性狀。有趣的是,LfNCED3及LoNCED3的阿拉伯芥轉殖株,卻呈現出差異性表現。進一步的啟動子序列及活性分析顯示,相較於LoNCED3啟動子,LfNCED3啟動子具有一E2F-like element,且在LfNCED3的基因表現上,扮演著負向調控的角色。因此,本研究顯示,百合群種間,NCED3基因的差異性表現,在異形簇生葉生長模式的調控上,扮演關鍵性的角色。 | zh_TW |
dc.description.abstract | Although exogenous ABA-regulated heterophylly has been well documented in multiple plant species, the effect of endogenous ABA and its molecular mechanism remain uncharacterized. In the present study, the effects of endogenous ABA on heterophyllous switching were investigated in two different lily varieties, Lilium formosanum and Lilium oriental hybrid ‘Casa Blanca’. Seedlings of L. formosanum, which have scale-leaf-type growth, displayed low levels of both 9-cis-epoxycarotenoid dioxygenase 3 (LfNCED3) transcripts and ABA, whereas seedlings of L. oriental hybrid ‘Casa Blanca’, which have scale-type growth, displayed high levels of both LoNCED3 transcripts and ABA. Sucrose induced endogenous ABA production in cultured lilies; low ABA induction shows scale-leaf-type growth, whereas scale-type growth becomes predominant when ABA levels are high. Heterologous expression of either LfNCED3 or LoNCED3 was found to complement the Arabidopsis Atnced3 mutant. Interestingly, the expression patterns of LfNCED3 and LoNCED3 in transgenic Arabidopsis plants are distinguishable. Further promoter analysis revealed that a putative E2F-like element in the LfNCED3 promoter, but not in the LoNCED3 promoter, plays a negative role in controlling its activity. Collectively, our results demonstrate that NCED3 plays a key role in ABA-mediated heterophylly in lilies. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T23:51:20Z (GMT). No. of bitstreams: 1 ntu-101-D92628005-1.pdf: 4151059 bytes, checksum: 27b804d7e0d546f895044a38fd432b99 (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 口試委員會審定書…………………………………………..……………………...…Ⅰ
中文摘要………………………………………………………………………………...1 英文摘要………………………………………………………………………………...2 前言……………………………………………………………………………………...3 前人研究………………………………………………………………………………...6 材料與方法…………………………………………………………………………….24 結果…………………………………………………………………………………….28 討論…………………………………………………………………………………….38 圖表…………………………………………………………………………………….43 參考文獻……………………………………………………………………………….61 附錄………………………………………………………………………….…72 | |
dc.language.iso | zh-TW | |
dc.title | 百合NCED3基因的差異性表現對離層酸所調控的異形簇生葉生長之影響 | zh_TW |
dc.title | Abscisic Acid-Mediated Heterophylly Is Regulated by Differential Expression of 9-cis-Epoxycarotenoid Dioxygenase 3 in Lilies | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 鵬林黃(Pung-Ling Lin),虎生盧(Huu-Sheng Lur),孟基張(Men-Chi Chang) | |
dc.subject.keyword | 離層酸,異形葉性,台灣百合,香水百合,休眠性, | zh_TW |
dc.subject.keyword | ABA,Heterophylly,Lilium formosanum,Dormancy, | en |
dc.relation.page | 74 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-07-20 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 園藝學研究所 | zh_TW |
顯示於系所單位: | 園藝暨景觀學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 4.05 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。