請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65552完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉進賢(Chein-Shan Liu) | |
| dc.contributor.author | "Yang, Hung-Che" | en |
| dc.contributor.author | 楊洪哲 | zh_TW |
| dc.date.accessioned | 2021-06-16T23:50:01Z | - |
| dc.date.available | 2012-07-30 | |
| dc.date.copyright | 2012-07-30 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-07-20 | |
| dc.identifier.citation | [1] A. Borel, (1991), Linear algebraic groups, Graduate Texts in Mathematics (2nd ed.), Berlin, New York: Springer-Verlag.
[2] A. J. Laub and K. Meyer (1974), Canonical forms for symplectic and Hamiltonian matrices. Celestial Mech. Vol. 9, pp. 213-238. [3] B. F. Spencer, J. Suhardjo and M. K. Sain (1992), Frequency Domain Optimal Control Strategies for Aseismic Protection, Journal of Engineering Mechanics, Vol. 120, No. 1, pp. 135-158. [4] B. K. Wada and S. Das, Application of Adaptive Structures Concepts to Civil Engineering, Intelligent Structure, Elsevier, London, pp. 194-217. [5] C. H. Choi (1990), Time-varying Riccati differential equation for numerical experiments. Proceeding of the 29th Conference on Decision and Control. Honolulu, pp.930-940. [6] C. Park and D. J. Scheeres (2006), Solution of Optimal Feedback Control Problems with General Boundary Conditions using Hamiltonian Dynamics and Generating Functions, Automatica, Vol. 42, pp. 869-875. [7] C. R. Martin and T. T. Soong (1976), Modal Control of Multistory Structures, Journal of the Engineering Mechanics Division, Vol. 102, No. 4, pp. 613-623. [8] C.-S. Liu (2001), Cone of non-linear dynamical system and group preserving schemes, International Journal of Non-linear Mechanics, Vol. 36, pp. 1047-1068. [9] C.-S. Liu (2006), The Lie-Group Shooting Method for Nonlinear Two-Point Boundary Value Problems Exhibiting Multiple Solutions, CMES, Vol.13, no.2, pp.149-163. [10] C.-S. Liu (2008), An LGSM to identify nonhomogeneous heat conductivity functions by an extra measurement of temperature, International Journal of Heat and Mass Transfer, Vol. 51, pp. 2603-2613. [11] C.-S. Liu (2007), The dualities of Lypunov and Riccati matrices in linear quadratical control theory. Int. J. Pure Appl. Math. Vol. 38, pp. 365-384. [12] E. K.-W. Chu, H.-Y. Fan and W.-W. Lin (2005), A structure-preserving doubling algorithm for continuous-time algebraic Riccati equations, Linear Algebra Appl. Vol. 396, pp. 55-80. [13] H.-K. Hong, C.-S. Liu and D.-Y. Liou (1994), Complete state LQ optimal control of earthquake excited structures. Proc. Nat. Sci. Counc. ROC (A), Vol. 18, pp. 386-399. [14] J. N. Yang, J. C. Wu and A. K. Agrawal and Z. Li (1994), Sliding Mode Control for Seismic-Excited Linear and Nonlinear Civil Engineering Structures, NCEER-94-0017 Buffalo, New York, USA. [15] J. N. Yang, A. Akbarpour and P. Ghaemmaghami (1987), New optimal control algorithms for structural control. J. Eng. Mech. ASCE, Vol. 113, pp. 1396-1387. [16] J. N. Yang and T. T. Soong (1988), Recent advances in active control of civil engineering structures. Prob. Eng. Mech. Vol. 3, pp. 179-188. [17] J. N. Yang, J. C. Wu and A. K. Agrawal, (1995). Sliding Mode Control for Nonlinear and Hysteretic Structures. ASCE, Vol. 121, No. 12, pp. 1330-1339. [18] J. N. Yang, J. C. Wu and A. K. Agrawal, (1995). Sliding Mode Control for Seismically Excited Linear Structures. ASCE, Vol. 121, No. 12, pp. 1386-1390. [19] J. N. Yang (1975), Application of Optimal Control Theory to Civil Engineering Structures, Journal of the Engineering Mechanics Division, Vol. 101, No. 6, pp. 819-838. [20] J. Rodelar, A. H. Barbat and J. M. Martin-Sanchez (1987), Predictive Control of Structures. Journal of Engineering Mechanics, Vol. 113, pp. 797-812. [21] J. Suhardjo (1990), Frequency Domain Techniques for Control of Civil Engineering Structures with Some Robustness Considerations, Ph.D. Dissertation, University of Notre Dame. USA. [22] J. Suhardjo, B. F. Spencer and M. K. Sain (1992), Frequency Domain Optimal Control of Wind-Excited Buildings, Journal of Engineering Mechanics, Vol. 118, No. 12, pp. 2463-2481. [23] J. T. P. Yao and S. Sae-Ung (1978), Active control of building structures. J. Eng. Mech. ASCE Vol. 104, pp. 335-350. [24] J. T. P. Yao, Concept of Structure Control (1972), ASCE Journal of Structure Division, Vol. 98, No. 7, pp. 1567-1574. [25] K. R. Meyer and G. R. Hall (1922), Introduction to Hamiltonian Dynamical Systems and the N-body Problem, Springer-Verlag, New York. [26] L. Meirovitch and T. J. Stemple (1997), Nonlinear control of structures in earthquakes. J. Eng. Mech. ASCE, Vol. 123, pp. 1090-1095. [27] M. Abdel-Rohman and H. H. Leipholz (1978), Structural Control by Pole Assignment Method, Journal of the Engineering Mechanics Division, Vol. 104, No. 5, pp. 1159-1175. [28] M. Abdel-Rohman, V. H. Quintana and H. H. Leipholz (1980), Optimal control of civil enginerring structures. J. Eng. Mech. ASCE, Vol. 106, pp. 57-73. [29] P. Benner and H. Faβbender (1997), An implicitly restarted symplectic Lanczos method for the Hamiltonian eigenvalue problem, Linear Algebra Appl. Vol. 263, pp. 75-111. [30] R. Byers (1987), Solving the algebraic Riccati equation with the matrix sign function. Linear Algebra Appl. Vol. 85, pp.267-279. [31] S. F. Masri, G. A. Bekey and T. K. Caughey, (1981) , Optimum Pulse Control of Flexible Structures, Journal of Applied Mechanics, Vol. 48, No. 3, 99. 619-626. [32] T. T. Soong (1990), Active Structural Control: Theory and Practice, Longman Scientific and Technical, Essex, England. [33] W. E. Schmitendorf, Faryar Jabbari and J. N. Yang (1994), Robust control techniques for buildings under earthquake excitation, Earthquake Engineering and Structural Dynamics, Vol. 23, pp. 539-552. [34] W. Zhong (1992), On the reciprocal theorem and adjoint symplectic orthogonal relation. Acta Mech. Sinica, Vol. 24, pp. 432-437. [35] Z. G. Wu, Nonlinear Feedback Strategies in Active Structural Control. Ph. D. Dissertation, State University of New York at Buffalo, USA. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65552 | - |
| dc.description.abstract | 結構主動控制研究與應用至今已有三十餘年的歷史,在土木工程應用上,能夠有效減輕結構在車輛、風力、地震力等動力作用下的反應與累積損害,提高結構的抗震能力與防災性能,為結構抗減震與防滅災之有效的方法及技術。土木工程結構振動控制大體上分為三個領域:基礎隔震、被動耗能減震與主動、半主動和智能控制。線性二次經典最佳控制中,求解黎卡提矩陣微分方程是無可避免的,因此本文之研究主旨便是透過具有辛群性質之數值方法,其可避開求解黎卡提微分方程,探討結構主動控制算法之線性二次經典最佳控制。文中所應用之數值方法為保群算法與辛群打靶法,此兩方法以李群的為基礎。使用這些數值方法可以在主動控制算法上達到迅速、經濟及精確的目的。將會設計幾個數值算例,並使用程式語言FORTRAN進行數值分析,展示此方法的結果,最後做出整體性的歸納以及未來發展的方向。 | zh_TW |
| dc.description.abstract | The research and application of active structure control have been studied for almost thirty years. For the civil engineering, the active control can reduce the damage from the dynamical response of vehicles, wind, earthquake, and increase the resistance of the earthquake and disaster. It is an effective way for the structure to resist from the earthquake and decrease the damage from the disaster. Moreover, the active control of civil engineering can be divided into three parts: base isolation systems, passive energy dissipation systems, active, semi-active and intelligent control systems. In the classical linear quadratic optimal control (LQR), it is unavoidable to solve the Riccati differential equations. Therefore, the main purpose of this paper is to use the numerical method with the properties of symplectic group and avoid solving the Riccati differential equations and investigate the classical linear quadratic optimal control problems. We employ the group preserving schemes (GPS) and symplectic group shooting method in this paper, which are on the basis of the Lie group. Using these two methods, we can solve the active control problems quickly, economically and accurately. Besides, we design several examples and utilize the programming language, FORTRAN, to analyze them. Then, we will show the numerical results. Finally, the conclusions and the future work are addressed. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T23:50:01Z (GMT). No. of bitstreams: 1 ntu-101-R99521243-1.pdf: 2451706 bytes, checksum: ed20f7eac3e8d38f73f95119b3709a78 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 第 一 章 緒論 1
1.1 前言 1 1.2 文獻回顧 2 1.3 研究動機與目的 2 1.4 論文架構 3 第 二 章 保群算法 5 2.1 群的概念 5 2.2 增廣動態系統 6 2.3 光錐構造之束制條件 10 2.4 凱萊轉換 10 2.5 指數映射 13 第 三 章 線性二次型經典最佳控制理論 19 3.1 動態系統之數學描述 19 3.2 線性二次型經典最佳控制算法 21 3.2.1 最佳控制之數學模型 21 3.2.2 求解最佳控制 23 3.2.3 黎卡提矩陣微分方程的簡化 26 3.2.4 性能指標的最佳值 27 3.2.5 受控系統的穩定性 27 3.2.6 控制輸入對系統之影響 28 3.2.7 開閉環控制與開環控制 28 3.3 以辛群打靶法求解線性二次型經典最佳控制 30 3.3.1 哈密頓系統 30 3.3.2 辛群之性質 32 3.3.3 辛群打靶法 33 3.3.4 考慮外在擾動下求解 35 第 四 章 算例實證 39 4.1 算例一 39 4.2 算例二 39 4.3 算例三 40 4.4 算例四 41 4.5 算例五 41 第 五 章 結論與未來展望 62 參考文獻 64 附錄A 四階龍格-庫塔法 68 | |
| dc.language.iso | zh-TW | |
| dc.subject | 保群算法 | zh_TW |
| dc.subject | 哈密頓系統 | zh_TW |
| dc.subject | 黎卡提矩陣 | zh_TW |
| dc.subject | 主動控制 | zh_TW |
| dc.subject | 李群 | zh_TW |
| dc.subject | 辛群 | zh_TW |
| dc.subject | Riccati matrix | en |
| dc.subject | Lie group | en |
| dc.subject | active control | en |
| dc.subject | group preserving schemes (GPS) | en |
| dc.subject | Hamiltonian system | en |
| dc.subject | symplectic group | en |
| dc.title | 以辛群求解彈性結構的線性二次最佳控制問題 | zh_TW |
| dc.title | Solving the Linearly Quadratic Optimal Control Problems of Elastic Structure by the Symplectic Group | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 范佳銘(Chia-Ming Fan),張致文 | |
| dc.subject.keyword | 保群算法,辛群,主動控制,哈密頓系統,黎卡提矩陣,李群, | zh_TW |
| dc.subject.keyword | group preserving schemes (GPS),symplectic group,active control,Hamiltonian system,Riccati matrix,Lie group, | en |
| dc.relation.page | 68 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-07-20 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 2.39 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
