Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65519
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor管傑雄
dc.contributor.authorChien-Cheng Chenen
dc.contributor.author陳建丞zh_TW
dc.date.accessioned2021-06-16T23:48:02Z-
dc.date.available2017-07-01
dc.date.copyright2012-07-31
dc.date.issued2012
dc.date.submitted2012-07-23
dc.identifier.citation[1] D. Drobne, M. Milani, A. Zrimec, V. Leser and M. Berden Zrimec, “Electron and ion imaging of gland cells using the FIB/SEM system,” Journal of Microscopy, Vol. 219, pp. 29–35, July 2005
[2] J. Cazaux, “About the role of the various types of secondary electrons(SE1; SE2; SE3) on the performance of LVSEM,” Journal of Microscopy, Vol. 214, pp. 341–347, June 2004
[3] D.A. Matthijs De Winter, C.T.W.M. Schneijdenberg, M.N. Lebbink, B. Lich, A. J . Verklejj, M.R. Drury and B.M. Humbel, “Tomography of insulating biological and geologicalmaterials using focused ion beam (FIB) sectioning and low-kV BSE imaging,” Journal of Microscopy, Vol. 233, pp. 372–383, 2009
[4] Joy, D.C. & Joy, C.S., “Low voltage scanning electron microscopy.” Micron., Vol. 27, 247–263,1996
[5] Debbie J. Stokes and Michael F. Hayles, “Methodologies for the preparation of soft materials
using CryoFIB SEM,” Proc. of SPIE, Vol. 7378 73780G-1, 2009
[6] Ryosuke Enoki, Daisuke Ono, Mazahir T. Hasan, Sato Honma, Ken-ichi Honma, “Single-cell resolution fluorescence imaging of circadian rhythms detected with a Nipkow spinning disk confocal system,” Journal of Neuroscience Methods 207, 72– 79,March 2012
[7] Miyawaki A, “Development of probes for cellular functions using fluorescent proteins and fluorescence resonance energy transfer,” Biochemical, Vol. 80, 357-73, 2011
[8] Tomislav Bacic, Nikola Llubesic, Zvonimir Uzarevic, Ljiljana Grgic and Jadranka Rosa, “TEM Investigation of Tannins and Chloroplast Structure in Needles of Damaged Silver Fir Trees,” ACTA BIOLOGICA CRACOVIENSIA Series Botanica 46: 145–149, 2004
[9] Hai-Dong Yu, Xiao-Fei Yang, Si-Ting Chen, Yu-Ting Wang, Ji-Kai Li, Qi Shen, Xun-Liang Liu, Fang-Qing Guo, “Downregulation of Chloroplast RPS1 Negatively Modulates Nuclear Heat-Responsive Expression of HsfA2 and Its Target Genes in Arabidopsis,” PLoS Genetics, Vol. 8, Issue 5, e1002699, May 2012
[10] Munroe PR, “The application of focused ion beam microscopy in the material sciences,” Mater Charact, 60:2–13, 2009
[11] Phaneuf MW, “Applications of focused ion beam microscopy to materials science specimens,” Micron, 30:277–88, 1999
[12] Wang Y-Z, Revie RW, Phaneuf MW, Li J, “Application of focused ion beam (FIB) microscopy to the study of crack profiles,” Fatigue Fract Eng Mater Sruct, 22:251–6, 1999
[13] J. Man, T. Vystavel, A. Weidner, I. Kubena, M. Petrenec, T. Kruml, J. Polak, “Study of cyclic strain localization and fatigue crack initiation using FIB technique,” International Journal of Fatigue, 39:44–53, 2012
[14] Burkhardt, C. and Nisch, W, “Electron Microscopy on FIB prepared interfaces of biological and technical materials: First results,” Praktische Metallographie-Practical Metallography, 42(4), 161–171, 2005
[15] Stokes, D., Morrissey, F. & Lich, B., “A new approach to studying biological and soft materials using focused ion beam scanning electron microscopy (FIB SEM).” EMAG-Nano Imaging, Analysis and Fabrication on the Nanoscale, Institute of Physics, Leeds, UK, 2006
[16] Obst,M.,Gasser,P.,Mavrocordatos,D.&Dittrich,M., “TEM-specimen preparation of cell/mineral interfaces by focused ion beam milling,” Am. Mineral. 90(8–9), 1270–1277, 2005
[17] Wirth, R, “Focused Ion Beam: A novel technology for advanced application of micro- and nanoanalysis in geosciences and applied mineralogy,” European Journal of Mineralogy, Vol. 16, 863-876, 2004
[18] Michael D. Uchic, Michael A. Groeber, Dennis M. Dimiduk and J.P. Simmons, '3Dmicrostructural characterization of nickel superalloys via serial-sectioning using a dual beam FIB-SEM,” Scripta Materialia, Vol. 55, 23–28, 2006
[19] Richard Wirth, “Focused Ion Beam (FIB) combined with SEM and TEM: Advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometre scale,” Chemical Geology, Vol. 261, 217–229,2009
[20] Nijsse, J. and van Aelst A.C., “Cryo-planing for cryo-scanning electron Microscopy,” Scanning, 21(6), 372–378, 1999
[21] Elder, H., “Cryo fixation,” Techniques in Immunocytochemistry, Vol. 4, pp. 1–28, 1989
[22] Dubochet, J., Adrian, M., Chang, J.-J., Homo, J.-C., Lepault, J., McDowall, A.W. and Schultz, P., “Cryo-electron microscopy of vitrified specimens,” Q. Rev. Biophys., 21, 129–228, 1988
[23] Sitte, H., Edelmann, L. & Neumann, K., “Cryo fixation without pretreatment at ambient pressure,” Cryo Techniques in Biological Electron Microscopy, pp. 87–113, 1987
[24] Ross T. Whitaker, “A Level-Set Approach to 3D Reconstruction from Range Data,” International Journal of Computer, Vision 29(3), 203–231, 1998
[25] Jasjit S. Suri, Kecheng Liu, Sameer Singh, Swamy N. Laxminarayan, Xiaolan Zeng, and Laura Reden, “Shape Recovery Algorithms Using Level Sets in 2-D/3-D Medical Imagery: A State-of-the-Art Review,” IEEE transactions on Information Technology in Biomedicine, VOL. 6, NO. 1, March 2002
[26] Paul A. Yushkevich, Joseph Piven, Heather Cody Hazlett, Rachel Gimpel Smith, Sean Ho,James C. Gee, and Guido Gerig, “User-guided 3D active contour segmentation of anatomical structures:Significantly improved efficiency and reliability,” NeuroImage 31, 1116 – 1128, 2006
[27] Principe, EL, “How to use FIB-SEM data for 3-D reconstruction,” R&D MAGAZINE, Vol. 47, 29-29, 2005
[28] Lich, Ben, “A Novel Approach to 3-D Biological Sample Analysis Using a Dual-Beam FIB/SEM,” American Biotechnology Laboratory, Vol. 27, 12-13, 2009
[29] Seema Jaisinghani, “Data Visualization: Concepts and Techniques in AMIRA.”, ppt
[30] M. Taheri, R.C. Phillips, J.R. Kish, G.A. Botton, “Analysis of the surface film formed on Mg by exposure to water using a FIB cross-section and STEM–EDS,” Corrosion Science Vol. 59, 222–228, 2012
[31] Hiroaki Takadama, Hyun-Min Kim, Tadashi Kokubo, Takashi Nakamura, “TEM-EDX study of mechanism of bonelike apatite formation on bioactive titanium metal in simulated body fluid,” Journal of Biomedical Materials Research, Volume 57, Issue 3, AUG 2001
[32] A.P. de los R’ıos, F.J. Hern’andez-Fern’andez, F. Tom’as-Alonso,
J.M. Palacios, D. G’omez, M. Rubio, G. V’ıllora, “A SEM–EDX study of highly stable supported liquid membranes based on ionic liquids,” Journal of Membrane Science 300, 88–94, 2007
[33] H.B. Yao, Y. Li, A.T.S. Wee, “An XPS investigation of the oxidation/corrosion of melt-spun Mg,” Appl. Surf. Sci. 158, 112–119, 2000.
[34] N.S. McIntyre, C. Chen, Role of impurities on Mg surfaces under ambient exposure conditions, Corros. Sci. 40, 1697–1709, 1998
[35] Amadasi, A, Brandone, A, Rizzi, A, Mazzarelli, D , Cattaneo, C, “The survival of metallic residues from gunshot wounds in cremated bone: a SEM-EDX study.” International Journal of Legal Medicine, Vol.126, 525-531, 2012
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65519-
dc.description.abstract在電子顯微鏡技術的快速發展下,利用電子顯微鏡來觀測細胞組織中的微
結構也成為熱門的研究領域。而在此領域中,利用穿透式電子顯微鏡(TEM)來觀測細胞切面已經廣泛的被利用,且在切面解析度上已取得良好的成果。在此篇論文中,我們將採用目前較常運用在半導體切面檢測之FIB-SEM(聚焦離子束雙束顯微鏡)系統來削切生物樣品。FIB-SEM系統的最大特色在於其不僅能提供樣本表面之訊息,能夠選擇我們計畫觀測之細胞樣品來削切觀測,不需將樣本製備成薄片,即能夠在離子束削切之下得到截面訊息,對於研究細胞的內部資訊與結構而言是相當有力的工具。
  在以往之FIB-SEM觀測過程中,實驗者由於半導體技術之影響,習慣於表面濺鍍一層金屬來增加導電度以防止電荷累積的現象。然而,這個步驟在生物樣本上,卻有可能造成熱破壞而影響樣本的狀態。因此,在此篇論文中,我們不採用濺鍍金屬之方式,而是在未鍍金屬的狀態下進行削切與觀察的動作。也由於沒有金屬層的保護,對於樣品的處理、基板的選擇、FIB之參數選擇與特殊處理就顯得格外重要。因此我們做了一系列的實驗,在樣品處理方面,我們採用OTOTO處理法增加樣品導電度、低角度斜切減少應力、高導電度基板與接地金屬結構加上絕緣氧化層阻隔背像散射電子、正確的離子束削切參數使切面簾幕效應減少,我們將能夠有效的改善切面二次電子影像解析度,使得原本無法觀測之切面影像變得清晰可見,解決了FIB-SEM長久以來為人詬病之問題,也使得此技術能夠有效的應用於生物觀測上。
zh_TW
dc.description.abstractIt is very important to perform electron microscopy to explore the biological field, especially while the ultra-fine structure of the bio-samples is of concern. Among them, the transmission electron microscope (TEM) has played a critical role on the resolution of a cross section image. Instead, in this thesis, we alternatively deployed focused-ion-beam (FIB) technique incorporated with a scanning electron microscope (SEM) to mill biological samples. The FIB-SEM system has been widely used in the semiconductor industry. Also, in the biological categories, such a double beam system can not only offer the milled surface information, but also provide an opportunity to choose the location and the field of milling in real-time. Furthermore, it is unnecessary to do the plastic embedding and thin slicing while we required for TEM.
With FIB-SEM to mill and observe semiconductors, it is usual to sputter a metal layer on the surface of the samples, to improve conductivity and to avoid charge accumulation. The maneuver is also inherited to use on the biological samples’ surface in the previous reports. However, such a metal sputtering may not be beneficial to the biological samples. In this thesis, we don’t use platinum sputtering; instead we mill the biological samples directly. Due to the elimination of metal sputtering, it becomes more crucial that samples preparation, milling substrate, and FIB controlling parameters must be meticulously adjusted and monitored according to the milling results. We hereby developed a series of methods such as OTOTO method, grounded substrates, low milled angles, ion beam recipes to improve the secondary electron image resolution of the milled surface of chloroplasts. With this novel method, FIB-SEM system may turn into a powerful tool for the biological investigation for the first time in its history.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:48:02Z (GMT). No. of bitstreams: 1
ntu-101-R99945034-1.pdf: 11593450 bytes, checksum: b8693fbc03f30aa7ef29c94bf2bb11b8 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員審定書 7
誌 謝 9
摘 要 11
Abstract 13
第一章 導論 15
1.1 研究動機 15
1.2 論文架構 15
第二章 生物電子顯微鏡概述與文獻回顧 17
2.1 背景 17
2.2 常用之生物顯微鏡 17
2.3 FIB-SEM相關文獻探討 18
第三章 樣品製備與量測儀器介紹 23
3.1 樣品選擇與製備 23
3.2 量測儀器介紹 25
3.3 超低溫冷凍系統介紹 28
3.4 3D重建系統介紹 32
3.5 EDS(Energy Dispersive spectrometers)系統介紹 34
第四章 實驗結果與討論 37
4.1經H&E stain處理後之葉綠體 37
4.2 經OTOTO處理後之葉綠體 40
4.3 離子束削切角度測試 45
4.4 旋轉載台改變拍攝角度測試 47
4.5 離子束加速電壓與電流調整測試 50
4.6 離子束削切EDS元素量測測試 54
4.7 最佳化結果比較 57
第五章 結論 62
參考文獻 63
dc.language.isozh-TW
dc.subject葉綠體zh_TW
dc.subject聚焦離子束顯微鏡zh_TW
dc.subjectFIB-SEMen
dc.subjectChloroplasten
dc.title利用葉綠體研究FIB-SEM削切技術zh_TW
dc.titleResearch on FIB-SEM Milling Techniques with Chloroplastsen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee田維誠,孫建文,孫允武
dc.subject.keyword聚焦離子束顯微鏡,葉綠體,zh_TW
dc.subject.keywordFIB-SEM,Chloroplast,en
dc.relation.page64
dc.rights.note有償授權
dc.date.accepted2012-07-23
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
11.32 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved