Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65514
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖淑貞(Shwu-Jen Liaw)
dc.contributor.authorMin-Cheng Wangen
dc.contributor.author王閔正zh_TW
dc.date.accessioned2021-06-16T23:47:41Z-
dc.date.available2012-09-18
dc.date.copyright2012-09-18
dc.date.issued2012
dc.date.submitted2012-07-23
dc.identifier.citation1. Aiba H (2007) Mechanism of RNA silencing by Hfq-binding small RNAs. Curr Opin Microbiol 10: 134-139.
2. Allison C, Coleman N, Jones PL, Hughes C (1992) Ability of Proteus mirabilis to invade human urothelial cells is coupled to motility and swarming differentiation. Infect Immun 60: 4740-4746.
3. Allison C, Emody L, Coleman N, Hughes C (1994) The role of swarm cell differentiation and multicellular migration in the uropathogenicity of Proteus mirabilis. J Infect Dis 169: 1155-1158.
4. Allison C, Hughes C (1991) Bacterial swarming: an example of prokaryotic differentiation and multicellular behaviour. Sci Prog 75: 403-422.
5. Ansong C, Yoon H, Porwollik S, Mottaz-Brewer H, Petritis BO, et al. (2009) Global systems-level analysis of Hfq and SmpB deletion mutants in Salmonella: implications for virulence and global protein translation. PLoS One 4: e4809.
6. Bahrani FK, Massad G, Lockatell CV, Johnson DE, Russell RG, et al. (1994) Construction of an MR/P fimbrial mutant of Proteus mirabilis: role in virulence in a mouse model of ascending urinary tract infection. Infect Immun 62: 3363-3371.
7. Bang IS, Frye JG, McClelland M, Velayudhan J, Fang FC (2005) Alternative sigma factor interactions in Salmonella: sigmaE and sigmaH promote antioxidant defences by enhancing sigmaS levels. Mol Microbiol 56: 811-823.
8. Battesti A, Majdalani N, Gottesman S (2011) The RpoS-mediated general stress response in Escherichia coli. Annu Rev Microbiol 65: 189-213.
9. Beynon LM, Griffith DW, Richards JC, Perry MB (1992) Characterization of the lipopolysaccharide O antigens of Actinobacillus pleuropneumoniae serotypes 9 and 11: antigenic relationships among serotypes 9, 11, and 1. J Bacteriol 174: 5324-5331.
10. Bonnet R, De Champs C, Sirot D, Chanal C, Labia R, et al. (1999) Diversity of TEM mutants in Proteus mirabilis. Antimicrob Agents Chemother 43: 2671-2677.
11. Braun V, Focareta T (1991) Pore-forming bacterial protein hemolysins (cytolysins). Crit Rev Microbiol 18: 115-158.
12. Chambers JR, Bender KS (2011) The RNA chaperone Hfq is important for growth and stress tolerance in Francisella novicida. PLoS One 6: e19797.
13. Chao Y, Vogel J (2010) The role of Hfq in bacterial pathogens. Curr Opin Microbiol 13: 24-33.
14. Chiang MK, Lu MC, Liu LC, Lin CT, Lai YC (2011) Impact of Hfq on global
132
gene expression and virulence in Klebsiella pneumoniae. PLoS One 6: e22248.
15. Chippendale GR, Warren JW, Trifillis AL, Mobley HL (1994) Internalization of Proteus mirabilis by human renal epithelial cells. Infect Immun 62: 3115-3121.
16. Coker C, Poore CA, Li X, Mobley HL (2000) Pathogenesis of Proteus mirabilis urinary tract infection. Microbes Infect 2: 1497-1505.
17. Del Porto P, Cifani N, Guarnieri S, Di Domenico EG, Mariggio MA, et al. (2011) Dysfunctional CFTR alters the bactericidal activity of human macrophages against Pseudomonas aeruginosa. PLoS One 6: e19970.
18. Devi KP, Nisha SA, Sakthivel R, Pandian SK (2010) Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. J Ethnopharmacol 130: 107-115.
19. Ding Y, Davis BM, Waldor MK (2004) Hfq is essential for Vibrio cholerae virulence and downregulates sigma expression. Mol Microbiol 53: 345-354.
20. Drechsel H, Thieken A, Reissbrodt R, Jung G, Winkelmann G (1993) Alpha-keto acids are novel siderophores in the genera Proteus, Providencia, and Morganella and are produced by amino acid deaminases. J Bacteriol 175: 2727-2733.
21. Fadeyibi IO, Raji MA, Ibrahim NA, Ugburo AO, Ademiluyi S (2012) Bacteriology of infected burn wounds in the burn wards of a teaching hospital in Southwest Nigeria. Burns.
22. Figueroa-Bossi N, Lemire S, Maloriol D, Balbontin R, Casadesus J, et al. (2006) Loss of Hfq activates the sigmaE-dependent envelope stress response in Salmonella enterica. Mol Microbiol 62: 838-852.
23. Figueroa-Bossi N, Valentini M, Malleret L, Fiorini F, Bossi L (2009) Caught at its own game: regulatory small RNA inactivated by an inducible transcript mimicking its target. Genes Dev 23: 2004-2015.
24. Franze de Fernandez MT, Eoyang L, August JT (1968) Factor fraction required for the synthesis of bacteriophage Qbeta-RNA. Nature 219: 588-590.
25. Fukuoka T, Masuda N, Takenouchi T, Sekine N, Iijima M, et al. (1991) Increase in susceptibility of Pseudomonas aeruginosa to carbapenem antibiotics in low-amino-acid media. Antimicrob Agents Chemother 35: 529-532.
26. Geng J, Song Y, Yang L, Feng Y, Qiu Y, et al. (2009) Involvement of the post-transcriptional regulator Hfq in Yersinia pestis virulence. PLoS One 4: e6213.
27. Givskov M, Ostling J, Eberl L, Lindum PW, Christensen AB, et al. (1998) Two separate regulatory systems participate in control of swarming motility of Serratia liquefaciens MG1. J Bacteriol 180: 742-745.
133
28. Hancock RE, Brinkman FS (2002) Function of pseudomonas porins in uptake and efflux. Annu Rev Microbiol 56: 17-38.
29. Hengge-Aronis R (1996) Back to log phase: sigma S as a global regulator in the osmotic control of gene expression in Escherichia coli. Mol Microbiol 21: 887-893.
30. Johansen J, Rasmussen AA, Overgaard M, Valentin-Hansen P (2006) Conserved small non-coding RNAs that belong to the sigmaE regulon: role in down-regulation of outer membrane proteins. J Mol Biol 364: 1-8.
31. Kadzhaev K, Zingmark C, Golovliov I, Bolanowski M, Shen H, et al. (2009) Identification of genes contributing to the virulence of Francisella tularensis SCHU S4 in a mouse intradermal infection model. PLoS One 4: e5463.
32. Karasova D, Sebkova A, Vrbas V, Havlickova H, Sisak F, et al. (2009) Comparative analysis of Salmonella enterica serovar Enteritidis mutants with a vaccine potential. Vaccine 27: 5265-5270.
33. Karavolos MH, Bulmer DM, Spencer H, Rampioni G, Schmalen I, et al. (2011) Salmonella Typhi sense host neuroendocrine stress hormones and release the toxin haemolysin E. EMBO Rep 12: 252-258.
34. Karen M. Wassarman FR, Carsten Rosenow, et al. (2011) Identification of novel small RNAs using comparative genomics and microarrays. Genes Dev 15: 1637-1651.
35. Keyhani NO, Roseman S (1997) Wild-type Escherichia coli grows on the chitin disaccharide, N,N'-diacetylchitobiose, by expressing the cel operon. Proc Natl Acad Sci U S A 94: 14367-14371.
36. Klauck E, Bohringer J, Hengge-Aronis R (1997) The LysR-like regulator LeuO in Escherichia coli is involved in the translational regulation of rpoS by affecting the expression of the small regulatory DsrA-RNA. Mol Microbiol 25: 559-569.
37. Kulesus RR, Diaz-Perez K, Slechta ES, Eto DS, Mulvey MA (2008) Impact of the RNA chaperone Hfq on the fitness and virulence potential of uropathogenic Escherichia coli. Infect Immun 76: 3019-3026.
38. Lacour S, Landini P (2004) SigmaS-dependent gene expression at the onset of stationary phase in Escherichia coli: function of sigmaS-dependent genes and identification of their promoter sequences. J Bacteriol 186: 7186-7195.
39. Leon R, Espin G (2008) flhDC, but not fleQ, regulates flagella biogenesis in Azotobacter vinelandii, and is under AlgU and CydR negative control. Microbiology 154: 1719-1728.
40. Li H, Luo YF, Williams BJ, Blackwell TS, Xie CM (2012) Structure and function of OprD protein in Pseudomonas aeruginosa: from antibiotic resistance
134
to novel therapies. Int J Med Microbiol 302: 63-68.
41. Li X, Johnson DE, Mobley HL (1999) Requirement of MrpH for mannose-resistant Proteus-like fimbria-mediated hemagglutination by Proteus mirabilis. Infect Immun 67: 2822-2833.
42. Maharjan R, Zhou Z, Ren Y, Li Y, Gaffe J, et al. (2010) Genomic identification of a novel mutation in hfq that provides multiple benefits in evolving glucose-limited populations of Escherichia coli. J Bacteriol 192: 4517-4521.
43. Masse E, Escorcia FE, Gottesman S (2003) Coupled degradation of a small regulatory RNA and its mRNA targets in Escherichia coli. Genes Dev 17: 2374-2383.
44. Masse E, Gottesman S (2002) A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proc Natl Acad Sci U S A 99: 4620-4625.
45. McCullen CA, Benhammou JN, Majdalani N, Gottesman S (2010) Mechanism of positive regulation by DsrA and RprA small noncoding RNAs: pairing increases translation and protects rpoS mRNA from degradation. J Bacteriol 192: 5559-5571.
46. Meibom KL, Forslund AL, Kuoppa K, Alkhuder K, Dubail I, et al. (2009) Hfq, a novel pleiotropic regulator of virulence-associated genes in Francisella tularensis. Infect Immun 77: 1866-1880.
47. Mobley HL, Belas R, Lockatell V, Chippendale G, Trifillis AL, et al. (1996) Construction of a flagellum-negative mutant of Proteus mirabilis: effect on internalization by human renal epithelial cells and virulence in a mouse model of ascending urinary tract infection. Infect Immun 64: 5332-5340.
48. Mobley HL, Chippendale GR, Swihart KG, Welch RA (1991) Cytotoxicity of the HpmA hemolysin and urease of Proteus mirabilis and Proteus vulgaris against cultured human renal proximal tubular epithelial cells. Infect Immun 59: 2036-2042.
49. Mobley HL, Island MD, Hausinger RP (1995) Molecular biology of microbial ureases. Microbiol Rev 59: 451-480.
50. Muffler A, Fischer D, Hengge-Aronis R (1996) The RNA-binding protein HF-I, known as a host factor for phage Qbeta RNA replication, is essential for rpoS translation in Escherichia coli. Genes Dev 10: 1143-1151.
51. Muffler A, Traulsen DD, Fischer D, Lange R, Hengge-Aronis R (1997) The RNA-binding protein HF-I plays a global regulatory role which is largely, but not exclusively, due to its role in expression of the sigmaS subunit of RNA polymerase in Escherichia coli. J Bacteriol 179: 297-300.
135
52. Nielubowicz GR, Smith SN, Mobley HL (2008) Outer membrane antigens of the uropathogen Proteus mirabilis recognized by the humoral response during experimental murine urinary tract infection. Infect Immun 76: 4222-4231.
53. O'Hara CM, Brenner FW, Miller JM (2000) Classification, identification, and clinical significance of Proteus, Providencia, and Morganella. Clin Microbiol Rev 13: 534-546.
54. Olivera Francetic DB, Cyril Badaut, and Anthony P.Pugsley (2000) Expression of the endogenous type II secretion pathway in Escherichia coli leads to chitinase secretion The EMBO Journal 19: 6697-6703.
55. Overgaard M, Johansen J, Moller-Jensen J, Valentin-Hansen P (2009) Switching off small RNA regulation with trap-mRNA. Mol Microbiol 73: 790-800.
56. Papenfort K, Vogel J (2009) Multiple target regulation by small noncoding RNAs rewires gene expression at the post-transcriptional level. Res Microbiol 160: 278-287.
57. Pearson MM, Sebaihia M, Churcher C, Quail MA, Seshasayee AS, et al. (2008) Complete genome sequence of uropathogenic Proteus mirabilis, a master of both adherence and motility. J Bacteriol 190: 4027-4037.
58. Pearson MM, Yep A, Smith SN, Mobley HL (2011) Transcriptome of Proteus mirabilis in the murine urinary tract: virulence and nitrogen assimilation gene expression. Infect Immun 79: 2619-2631.
59. Peerbooms PG, Verweij AM, MacLaren DM (1984) Vero cell invasiveness of Proteus mirabilis. Infect Immun 43: 1068-1071.
60. Plumbridge J, Pellegrini O (2004) Expression of the chitobiose operon of Escherichia coli is regulated by three transcription factors: NagC, ChbR and CAP. Mol Microbiol 52: 437-449.
61. Pratt LA, Hsing W, Gibson KE, Silhavy TJ (1996) From acids to osmZ: multiple factors influence synthesis of the OmpF and OmpC porins in Escherichia coli. Mol Microbiol 20: 911-917.
62. Rasmussen AA, Johansen J, Nielsen JS, Overgaard M, Kallipolitis B, et al. (2009) A conserved small RNA promotes silencing of the outer membrane protein YbfM. Mol Microbiol 72: 566-577.
63. Rauprich O, Matsushita M, Weijer CJ, Siegert F, Esipov SE, et al. (1996) Periodic phenomena in Proteus mirabilis swarm colony development. J Bacteriol 178: 6525-6538.
64. Recht MI, Douthwaite S, Puglisi JD (1999) Basis for prokaryotic specificity of action of aminoglycoside antibiotics. EMBO J 18: 3133-3138.
65. Schiano CA, Bellows LE, Lathem WW (2010) The small RNA chaperone Hfq
136
is required for the virulence of Yersinia pseudotuberculosis. Infect Immun 78: 2034-2044.
66. Schweizer HP, Hoang TT (1995) An improved system for gene replacement and xylE fusion analysis in Pseudomonas aeruginosa. Gene 158: 15-22.
67. Shakhnovich EA, Davis BM, Waldor MK (2009) Hfq negatively regulates type III secretion in EHEC and several other pathogens. Mol Microbiol 74: 347-363.
68. Silverblatt FJ, Ofek I (1978) Influence of pili on the virulence of Proteus mirabilis in experimental hematogenous pyelonephritis. J Infect Dis 138: 664-667.
69. Simonsen KT, Nielsen G, Bjerrum JV, Kruse T, Kallipolitis BH, et al. (2011) A role for the RNA chaperone Hfq in controlling adherent-invasive Escherichia coli colonization and virulence. PLoS One 6: e16387.
70. Sittka A, Pfeiffer V, Tedin K, Vogel J (2007) The RNA chaperone Hfq is essential for the virulence of Salmonella typhimurium. Mol Microbiol 63: 193-217.
71. Sonnleitner E, Hagens S, Rosenau F, Wilhelm S, Habel A, et al. (2003) Reduced virulence of a hfq mutant of Pseudomonas aeruginosa O1. Microb Pathog 35: 217-228.
72. Sonnleitner E, Moll I, Blasi U (2002) Functional replacement of the Escherichia coli hfq gene by the homologue of Pseudomonas aeruginosa. Microbiology 148: 883-891.
73. Sonnleitner E, Schuster M, Sorger-Domenigg T, Greenberg EP, Blasi U (2006) Hfq-dependent alterations of the transcriptome profile and effects on quorum sensing in Pseudomonas aeruginosa. Mol Microbiol 59: 1542-1558.
74. Soper T, Mandin P, Majdalani N, Gottesman S, Woodson SA (2010) Positive regulation by small RNAs and the role of Hfq. Proc Natl Acad Sci U S A 107: 9602-9607.
75. Sousa SA, Ramos CG, Moreira LM, Leitao JH (2010) The hfq gene is required for stress resistance and full virulence of Burkholderia cepacia to the nematode Caenorhabditis elegans. Microbiology 156: 896-908.
76. Stickler D, Morris N, Moreno MC, Sabbuba N (1998) Studies on the formation of crystalline bacterial biofilms on urethral catheters. Eur J Clin Microbiol Infect Dis 17: 649-652.
77. Thompson KM, Rhodius VA, Gottesman S (2007) SigmaE regulates and is regulated by a small RNA in Escherichia coli. J Bacteriol 189: 4243-4256.
78. Vogel J (2009) An RNA trap helps bacteria get the most out of chitosugars. Mol Microbiol 73: 737-741.
79. Vogel J, Papenfort K (2006) Small non-coding RNAs and the bacterial outer
137
membrane. Curr Opin Microbiol 9: 605-611.
80. Walker KE, Moghaddame-Jafari S, Lockatell CV, Johnson D, Belas R (1999) ZapA, the IgA-degrading metalloprotease of Proteus mirabilis, is a virulence factor expressed specifically in swarmer cells. Mol Microbiol 32: 825-836.
81. Warren JW, Tenney JH, Hoopes JM, Muncie HL, Anthony WC (1982) A prospective microbiologic study of bacteriuria in patients with chronic indwelling urethral catheters. J Infect Dis 146: 719-723.
82. Wu Y, Outten FW (2009) IscR controls iron-dependent biofilm formation in Escherichia coli by regulating type I fimbria expression. J Bacteriol 191: 1248-1257.
83. Yamada J, Yamasaki S, Hirakawa H, Hayashi-Nishino M, Yamaguchi A, et al. (2010) Impact of the RNA chaperone Hfq on multidrug resistance in Escherichia coli. J Antimicrob Chemother 65: 853-858.
84. Yue-Jin Wua C-YC, and Yaw-Kuen Lia (2009) Cloning and Expression of Chitinase A from Serratia marcescens for Large-scale Preparation of N,N-Diacetyl Chitobiose. Journal of the Chinese Chemical Society 56: 688-695.
85. Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415: 389-395.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65514-
dc.description.abstract奇異變型桿菌(Proteus mirabilis)為兼性厭氧之革蘭氏陰性腸內菌,屬於健康人類腸道的正常菌叢,但在長期使用導尿管之病患身上容易造成伺機性感染,嚴重甚至可能導致腎臟病、肺炎等併發症。
Hfq是細菌體內的RNA chaperone protein,其功能主要是藉由協助sRNAs的作用來進行基因的轉錄後調控(post-transcriptional regulation)進而促進或抑制目標蛋白質的轉譯,Hfq序列在很多革蘭氏陰性菌中是非常保守的,在P. mirabilis也不例外,且其基因的排列都是miaA-hfq-hflX;目前越來越多的研究顯示Hfq在許多革蘭氏陰性的細菌體內扮演著重要角色,影響細菌的生理及致病力。
本篇論文利用knockout方式建構P. mirabilis hfq突變株,研究其表現型後發現hfq突變會使得P. mirabilis生長些微緩慢、泳動能力下降、表面移行能力上升、鞭毛蛋白表現量下降、生物膜生成能力下降、溶血酶活性降低並延後、細胞入侵能力(NTUB1 )降低、巨噬細胞(Raw)清除能力上升、外膜蛋白表現量及通透性上升、抗生素感受性上升、熱、高滲透壓、氧化壓力抵抗能力降低、大鼠皮膚感染能力降低等,綜合以上結果顯示Hfq在P. mirabilis中扮演重要角色,對其生理及致病因子表現均有影響。由於hfq突變株對PB感受性有十倍上升,利用LPS定量、PB結合能力測試、rppA reporter assay分析結果hfq突變株與野生株均無明顯差異,所以目前Hfq參與之PB藥物感受性改變機制還是未知的。
先前研究指出,Hfq可做為RNA chaperone protein穩定rpoS mRNA,並同時藉由DsrA, RprA, ArcZ,RyhA等小RNAs協助促進轉譯,本論文利用real-time PCR發現當hfq突變時rpoS mRNA表現量就會降低,顯示在P. mirabilis中Hfq可扮演穩定rpoS mRNA的角色,同時利用建構rpoS knockout突變株並分析其表現型後發現其細胞侵入能力降低、對氧化壓力及高滲透壓環境抵抗能力降低,顯示hfq突變株可能因為失去穩定及幫助rpoS mRNA轉譯的角色,使rpoS表現量降低而造成這些現象。
研究顯示細菌的Hfq會與小RNA協同作用在外膜上,使得外膜蛋白(OMP)表現量改變,進而產生外膜壓力(envelop stress),促使RpoE活化;本論文利用先前實驗室學長建構之rpoE reporter plasmid測試野生株與hfq突變株的rpoE活性,發現在hfq突變株中rpoE活性明顯高於野生株,顯示在P. mirabilis中hfq突變同樣會產生外膜壓力而促使rpoE活化;進一步利用SDS-PAGE分析其外膜蛋白組成,並用real-time PCR驗證,發現hfq突變導致PMI0044、PMI0540、PMI1017、OmpA、OmpF大量上升,尤以PMI0540最為明顯,利用PMI0540過度表現株也證實其過度表現足以產生外膜壓力,使rpoE活性上升,並使其對SDS, Cm藥物感受性上升及高滲透壓環境抵抗能力、生物膜生成能力下降。PMI0540經比對後發現其胺基酸序列與YbfM (ChiP)具有高度相似性,同樣屬於OprD family,YbfM的功能在Salmonella及E. coli中已有相關研究,而參與YbfM調控的基因或蛋白包括Hfq, MicM, chbBC IGR,這三者在P. mirabilis中均有相對應之基因,而在PMI0540 5’UTR、chbBC IGR及MicM中也都具有相對應之結合位序列,本篇論文發現在P. mirabilis中三者均有參與PMI0540的調控,不管是在hfq突變株或MicM突變株或者是在野生株接受chitobiose刺激的情況下,PMI0540的蛋白量均會明顯上升,而chb操作組在接受chitobiose的刺激下也會大量表現,證實PMI0540應該就是P. mirabilis中YbfM的homologue,同時也發現此外膜蛋白會影響生物膜生成能力,當其大量表現時會使得P. mirabilis生物膜生成能力降低;而在SDS, Cm藥物感受性方面MicM突變株較野生株僅有兩倍之上升。
總結,Hfq在P. mirabilis中扮演重要角色;影響其生長、運動性、毒力因子、壓力抵抗能力、藥物感受性、致病力;同時在基因調控方面,Hfq可能藉由穩定rpoS mRNA進而影響到部分表現型,而對外膜蛋白部分,Hfq與MicM小RNA均可調控PMI0540表現,使其在野生株中維持在一個很低的量,而當環境中出現chitobiose時chb操作組可被活化,同時PMI0540會大量表現,以幫助細菌利用chitosugars。
zh_TW
dc.description.abstractProteus mirabilis is a facultative anaerobic, Gram-negative bacterium and a member of the Enterobacteriaceae family. It is a normal flora in human intestine. It usually causes, however, urinary tract infection (UTI), and leads to kidney disease, pneumonia and septicemia in individuals with long-term catheterization or with structural or functional abnormalities in the urinary tract.
Hfq is a bacterial RNA chaperone protein. Its regulation is mediated through small RNAs (sRNAs), which belong to post-transcriptional regulation. Hfq can help sRNA function, as to increase or decrease target proteins translation. The sequence of Hfq is highly conserved in several Gram negative pathogens, including Proteus mirabilis. In almost all of the Gram negative bacteria, hfq gene is located in a miaA-hfq-hflX cascade, and there’s no exception for P. mirabilis. Recently, ever-increasing studies of Hfq have been reported, focusing on its impact on bacterial physiology and virulence.
To understand the role of Hfq in P. mirabilis, in our study we constructed an hfq mutant by knockout assay. In the following experiments we found that hfq mutation caused massive effects on P. mirabilis, leading to growth defect, changes in motility, decreased flagellin expression, impaired biofilm formation, delayed haemolysin cycle and decreased activity, decreased NTUB1 cell invasion ability, increased macrophage clearance, changes in outer membrane protein profile, increased outer membrane permeability, increased sensitivity to antibiotics, lowered heat, oxidative and hyperosmotic stress resistance, and attenuated rat burn wound skin infection ability. According to the aboved-mentaioned results we concluded that Hfq played a vital role in P. mirabilis, affecting its physiology and virulence.
Since there’s a ten-fold increase in polymyxin B sensentivity in hfq mutant, we used LPS quantification, PB binding assay, and rppA reporter assay to study the
underlying mechanisms involved. So far, none of the results have been found desirable to explain our findings. Thus, the effect of Hfq on polymyxin B sensentivity in P. mirabilis remained unclear.
It has been proved that Hfq can function as an RNA chaperone protein to stabilize rpoS mRNA. Furthermore, it can up-regulate RpoS translation via DsrA, RprA, ArcZ, RyhA-sRNAs. In our study, using real-time PCR we found that rpoS mRNA was significantly decreased in hfq mutant. This indicated that Hfq has a similar effect on rpoS mRNA stability in P. mirabilis. Also, we constructed rpoS mutant and found that it showed some coomon phenotypes with the hfq mutant, including decreased NTUB1 cell invasion ability as well as lowered resistance to oxidative and hyperosmotic stresses.
Studies have revealed that Hfq can act in concert with sRNAs to influence targets on bacterial outer membrane. When hfq is mutated, loss of these actions can change the outer membrane protein composition, and thus dirupt the outer membrane intergrity. Changes in outer membrane intergrity can then activate the rpoE-envelop stress sigma factor. In our data, we showed that hfq mutant possessed stronger rpoE activity than wild type, indicating that there’s a similar role of Hfq in P. mirabilis. Using SDS-PAGE outer membrane protein profiling we further iderntified five outer membrane proteins that accumulated in the hfq mutant. These are PMI0044, PMI0540, PMI1017, OmpA, and OmpF. Subsequent real-time PCR quantification revealed that PMI0540 is the most significantly increased one. After constructing the PMI0540 overexpression strain and assaying its phenotypes, we observed that rpoE reporter acitivity was increased. The result indicated that PMI0540 overexpression alone can activiate rpoE response. In other phenotypic assays we found that SDS and Cm sensitivity was increased and PMI0540 overexpression strain showed lowered hyperosmotic stress resistance and biofilm formation ability.
After searching for PMI0540 homologue in other bacteria, we found that PMI0540 was closely related to YbfM. They both belong to OprD family outer membrane protein. The specific function of YbfM have been published in E. coli and Salmonella. There are three important genes involved in YbfM regulation, hfq, MicM, and chbBC intergenic region. In P. mirabilis, all of the three genes do exist and their functionally important binding sites are also conserved. In this study we found that similar roles of these regulators applied to P. mirabilis. When Proteus encountered chitobiose, PMI0540 was then induced and synthesized for transportation of these sugars. And chb operon, MicM, Hfq were all involved in this kind of regulation, which was called an mRNA-mediated antisense regulation of the antisense RNA.
To sum up, we found that Hfq played an important role in P. mirabilis, affecting its growth, motility, stress resistance, antibiotics sensitivity, and virulence factors. We also observed that RpoS did attribute to some of the hfq mutant phenotypes, but not all. In the regulation of outer membrane proteins part we found that MicM and Hfq can repress PMI0540 translation unless the signal molecule, chitobiose, occurred.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:47:41Z (GMT). No. of bitstreams: 1
ntu-101-R99424004-1.pdf: 2577881 bytes, checksum: 449a173044bd0335be61cf1b1f4137bb (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents致謝...................................................i
目錄...................................................iii
摘要................................................... ix
Abstract ................................................xi
第一章 緒論...............................................1
第一節 奇異變形桿菌 (Proteus mirabilis) 介紹 ..............................................1
第二節 Hfq的相關研究…………… ……………………..….……………… ..6
第三節 研究動機與目的 ……………………………………..……………..... 9
第四節 實驗設計 ……………………………………………………………. 10
第二章 實驗材料與方法 ......................................................................................... 11
第一節 實驗材料 ............................................................................................. 11
第二節 hfq, rpoS和MicM knockout方法……………………...…….……... 13
第三節 分析突變株表現型(phenotype)及毒力因子 (virulence factor) 表現………………………………..……………………………………. 23
第四節 Hfq參與之基因調控分析... …………………………………………43
第三章 實驗結果 ........................................ 54
第一節 利用knockout建立P. mirabilis hfq突變株 ....................................... 54
第二節 hfq knockout突變株表現型分析 ....................................................... 54
第三節 hfq knockout突變株毒力因子分析 …………………….………….. 58
第四節 Hfq參與之PB感受性上升調控分析 …...…………………………. 60
第五節 Hfq與RpoS關係研究……………………………………. ………… 61
第六節 Hfq與外膜蛋白(outer membrane protein)及RpoE關係研究….….... 62
第四章 結論與討論 ................................................................................................ 68
第一節 結論 .................................................................................................... 68
第二節 hfq突變株表現型(phenotype) …………………………...….……… 70
第三節 Hfq與RpoS關係探討........................................................................72
第四節 Hfq與外膜蛋白及RpoE關係探討....................................................74
第五節 PMI0540相關功能及調控探討 …………………………………… 75
第六節 P. mirabilis中的小RNA……………………………………...………78
第七節 其他Hfq相關研究………………………………………...…………79
第八節 未來展望...................................................80
第五章 表................................................... 81
第六章 圖................................................... 90
第七章 附錄................................................... 120
參考文獻...................................................131
dc.language.isozh-TW
dc.subjectHfqzh_TW
dc.subject奇異變型桿菌zh_TW
dc.subjectProteus mirabilisen
dc.subjectHfqen
dc.title奇異變型桿菌Hfq對於壓力抵抗能力、毒力因子表現及外膜蛋白之調控機制探討zh_TW
dc.titleThe roles of Proteus mirabilis Hfq in stress resistance, virulence factor expression, and the regulation of outer membrane proteinsen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄧麗珍(Lee-Jene Teng),賴信志(Hsin-Chih Lai),楊翠青(TSUEY-CHING YANG),薛博仁(Po-Ren Hseuh)
dc.subject.keyword奇異變型桿菌,Hfq,zh_TW
dc.subject.keywordProteus mirabilis,Hfq,en
dc.relation.page137
dc.rights.note有償授權
dc.date.accepted2012-07-24
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫學檢驗暨生物技術學研究所zh_TW
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
2.52 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved