Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65488
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖淑貞(Shwu-Jen Liaw)
dc.contributor.authorQuen-Yen Linen
dc.contributor.author林奎延zh_TW
dc.date.accessioned2021-06-16T23:46:07Z-
dc.date.available2012-09-18
dc.date.copyright2012-09-18
dc.date.issued2012
dc.date.submitted2012-07-24
dc.identifier.citation1. Lyerly DM, Kreger AS: Importance of serratia protease in the pathogenesis of experimental Serratia marcescens pneumonia. Infection and immunity 1983, 40(1):113-119.
2. Hejazi A, Falkiner FR: Serratia marcescens. Journal of medical microbiology 1997, 46(11):903-912.
3. Maltezou HC, Tryfinopoulou K, Katerelos P, Ftika L, Pappa O, Tseroni M, Kostis E, Kostalos C, Prifti H, Tzanetou K et al: Consecutive Serratia marcescens multiclone outbreaks in a neonatal intensive care unit. American journal of infection control 2012.
4. Iosifidis E, Farmaki E, Nedelkopoulou N, Tsivitanidou M, Kaperoni M, Pentsoglou V, Pournaras S, Athanasiou-Metaxa M, Roilides E: Outbreak of bloodstream infections because of Serratia marcescens in a pediatric department. American journal of infection control 2012, 40(1):11-15.
5. Gaynes R, Edwards JR: Overview of nosocomial infections caused by gram-negative bacilli. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 2005, 41(6):848-854.
6. Das S, Sheorey H, Taylor HR, Vajpayee RB: Association between cultures of contact lens and corneal scraping in contact lens related microbial keratitis. Archives of ophthalmology 2007, 125(9):1182-1185.
7. Cooksey RC, Thorne GM, Farrar WE, Jr.: R factor-mediated antibiotic resistance in Serratia marcescens. Antimicrobial agents and chemotherapy 1976, 10(1):123-127.
8. Claret L, Hughes C: Functions of the subunits in the FlhD(2)C(2) transcriptional master regulator of bacterial flagellum biogenesis and swarming. Journal of molecular biology 2000, 303(4):467-478.
9. Claret L, Hughes C: Rapid turnover of FlhD and FlhC, the flagellar regulon transcriptional activator proteins, during Proteus swarming. Journal of bacteriology 2000, 182(3):833-836.
10. Adler J, Templeton B: The effect of environmental conditions on the motility of Escherichia coli. Journal of general microbiology 1967, 46(2):175-184.
11. Chilcott GS, Hughes KT: Coupling of flagellar gene expression to flagellar assembly in Salmonella enterica serovar typhimurium and Escherichia coli. Microbiology and molecular biology reviews : MMBR 2000, 64(4):694-708.
12. Shi W, Bogdanov M, Dowhan W, Zusman DR: The pss and psd genes are required for motility and chemotaxis in Escherichia coli. Journal ofbacteriology 1993, 175(23):7711-7714.
13. Hertle R, Hilger M, Weingardt-Kocher S, Walev I: Cytotoxic action of Serratia marcescens hemolysin on human epithelial cells. Infection and immunity 1999, 67(2):817-825.
14. Poole K, Schiebel E, Braun V: Molecular characterization of the hemolysin determinant of Serratia marcescens. Journal of bacteriology 1988, 170(7):3177-3188.
15. Hertle R, Schwarz H: Serratia marcescens internalization and replication in human bladder epithelial cells. BMC infectious diseases 2004, 4:16.
16. Kurz CL, Chauvet S, Andres E, Aurouze M, Vallet I, Michel GP, Uh M, Celli J, Filloux A, De Bentzmann S et al: Virulence factors of the human opportunistic pathogen Serratia marcescens identified by in vivo screening. The EMBO journal 2003, 22(7):1451-1460.
17. Marre R, Hacker J, Braun V: The cell-bound hemolysin of Serratia marcescens contributes to uropathogenicity. Microbial pathogenesis 1989, 7(2):153-156.
18. O'Toole G, Kaplan HB, Kolter R: Biofilm formation as microbial development. Annual review of microbiology 2000, 54:49-79.
19. Alavi M, Belas R: Surface sensing, swarmer cell differentiation, and biofilm development. Methods in enzymology 2001, 336:29-40.
20. Fraser GM, Hughes C: Swarming motility. Current opinion in microbiology 1999, 2(6):630-635.
21. Sturgill G, Rather PN: Evidence that putrescine acts as an extracellular signal required for swarming in Proteus mirabilis. Molecular microbiology 2004, 51(2):437-446.
22. Allison C, Hughes C: Bacterial swarming: an example of prokaryotic differentiation and multicellular behaviour. Science progress 1991, 75(298 Pt 3-4):403-422.
23. Harshey RM: Bees aren't the only ones: swarming in gram-negative bacteria. Molecular microbiology 1994, 13(3):389-394.
24. Eberl L, Molin S, Givskov M: Surface motility of serratia liquefaciens MG1. Journal of bacteriology 1999, 181(6):1703-1712.
25. Lai HC, Soo PC, Wei JR, Yi WC, Liaw SJ, Horng YT, Lin SM, Ho SW, Swift S, Williams P: The RssAB two-component signal transduction system in Serratia marcescens regulates swarming motility and cell envelope architecture in response to exogenous saturated fatty acids. Journal of bacteriology 2005, 187(10):3407-3414.
26. Givskov M, Ostling J, Eberl L, Lindum PW, Christensen AB, Christiansen G, Molin S, Kjelleberg S: Two separate regulatory systems participate in controlof swarming motility of Serratia liquefaciens MG1. Journal of bacteriology 1998, 180(3):742-745.
27. Gygi D, Bailey MJ, Allison C, Hughes C: Requirement for FlhA in flagella assembly and swarm-cell differentiation by Proteus mirabilis. Molecular microbiology 1995, 15(4):761-769.
28. Fraser GM, Bennett JC, Hughes C: Substrate-specific binding of hook-associated proteins by FlgN and FliT, putative chaperones for flagellum assembly. Molecular microbiology 1999, 32(3):569-580.
29. Gygi D, Fraser G, Dufour A, Hughes C: A motile but non-swarming mutant of Proteus mirabilis lacks FlgN, a facilitator of flagella filament assembly. Molecular microbiology 1997, 25(3):597-604.
30. Burkart M, Toguchi A, Harshey RM: The chemotaxis system, but not chemotaxis, is essential for swarming motility in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America 1998, 95(5):2568-2573.
31. Harshey RM, Matsuyama T: Dimorphic transition in Escherichia coli and Salmonella typhimurium: surface-induced differentiation into hyperflagellate swarmer cells. Proceedings of the National Academy of Sciences of the United States of America 1994, 91(18):8631-8635.
32. Belas R, Schneider R, Melch M: Characterization of Proteus mirabilis precocious swarming mutants: identification of rsbA, encoding a regulator of swarming behavior. Journal of bacteriology 1998, 180(23):6126-6139.
33. Rauprich O, Matsushita M, Weijer CJ, Siegert F, Esipov SE, Shapiro JA: Periodic phenomena in Proteus mirabilis swarm colony development. Journal of bacteriology 1996, 178(22):6525-6538.
34. Verstraeten N, Braeken K, Debkumari B, Fauvart M, Fransaer J, Vermant J, Michiels J: Living on a surface: swarming and biofilm formation. Trends in microbiology 2008, 16(10):496-506.
35. Leon R, Espin G: flhDC, but not fleQ, regulates flagella biogenesis in Azotobacter vinelandii, and is under AlgU and CydR negative control. Microbiology (Reading, England) 2008, 154(Pt 6):1719-1728.
36. Rowley G, Spector M, Kormanec J, Roberts M: Pushing the envelope: extracytoplasmic stress responses in bacterial pathogens. Nature reviews Microbiology 2006, 4(5):383-394.
37. Gygi D, Rahman MM, Lai HC, Carlson R, Guard-Petter J, Hughes C: A cell-surface polysaccharide that facilitates rapid population migration by differentiated swarm cells of Proteus mirabilis. Molecular microbiology 1995, 17(6):1167-1175.38. Toguchi A, Siano M, Burkart M, Harshey RM: Genetics of swarming motility in Salmonella enterica serovar typhimurium: critical role for lipopolysaccharide. Journal of bacteriology 2000, 182(22):6308-6321.
39. Hancock RE: Cationic peptides: effectors in innate immunity and novel antimicrobials. The Lancet infectious diseases 2001, 1(3):156-164.
40. Zasloff M: Antimicrobial peptides of multicellular organisms. Nature 2002, 415(6870):389-395.
41. Evans ME, Feola DJ, Rapp RP: Polymyxin B sulfate and colistin: old antibiotics for emerging multiresistant gram-negative bacteria. The Annals of pharmacotherapy 1999, 33(9):960-967.
42. Wiese A, Gutsmann T, Seydel U: Towards antibacterial strategies: studies on the mechanisms of interaction between antibacterial peptides and model membranes. Journal of endotoxin research 2003, 9(2):67-84.
43. Storm DR, Rosenthal KS, Swanson PE: Polymyxin and related peptide antibiotics. Annual review of biochemistry 1977, 46:723-763.
44. Wiese A, Munstermann M, Gutsmann T, Lindner B, Kawahara K, Zahringer U, Seydel U: Molecular mechanisms of polymyxin B-membrane interactions: direct correlation between surface charge density and self-promoted transport. The Journal of membrane biology 1998, 162(2):127-138.
45. Allison C, Coleman N, Jones PL, Hughes C: Ability of Proteus mirabilis to invade human urothelial cells is coupled to motility and swarming differentiation. Infection and immunity 1992, 60(11):4740-4746.
46. Allison C, Emody L, Coleman N, Hughes C: The role of swarm cell differentiation and multicellular migration in the uropathogenicity of Proteus mirabilis. The Journal of infectious diseases 1994, 169(5):1155-1158.
47. Bahrani FK, Massad G, Lockatell CV, Johnson DE, Russell RG, Warren JW, Mobley HL: Construction of an MR/P fimbrial mutant of Proteus mirabilis: role in virulence in a mouse model of ascending urinary tract infection. Infection and immunity 1994, 62(8):3363-3371.
48. Barnhart MM, Chapman MR: Curli biogenesis and function. Annual review of microbiology 2006, 60:131-147.
49. Belas R: Expression of multiple flagellin-encoding genes of Proteus mirabilis. Journal of bacteriology 1994, 176(23):7169-7181.
50. Belas R, Goldman M, Ashliman K: Genetic analysis of Proteus mirabilis mutants defective in swarmer cell elongation. Journal of bacteriology 1995, 177(3):823-828.
51. Sieprawska-Lupa M, Mydel P, Krawczyk K, Wojcik K, Puklo M, Lupa B, Suder P, Silberring J, Reed M, Pohl J et al: Degradation of human antimicrobialpeptide LL-37 by Staphylococcus aureus-derived proteinases. Antimicrobial agents and chemotherapy 2004, 48(12):4673-4679.
52. Frick IM, Akesson P, Rasmussen M, Schmidtchen A, Bjorck L: SIC, a secreted protein of Streptococcus pyogenes that inactivates antibacterial peptides. The Journal of biological chemistry 2003, 278(19):16561-16566.
53. Jin T, Bokarewa M, Foster T, Mitchell J, Higgins J, Tarkowski A: Staphylococcus aureus resists human defensins by production of staphylokinase, a novel bacterial evasion mechanism. Journal of immunology (Baltimore, Md : 1950) 2004, 172(2):1169-1176.
54. Kumar A, Schweizer HP: Bacterial resistance to antibiotics: active efflux and reduced uptake. Advanced drug delivery reviews 2005, 57(10):1486-1513.
55. Shafer WM, Qu X, Waring AJ, Lehrer RI: Modulation of Neisseria gonorrhoeae susceptibility to vertebrate antibacterial peptides due to a member of the resistance/nodulation/division efflux pump family. Proceedings of the National Academy of Sciences of the United States of America 1998, 95(4):1829-1833.
56. Margolles A, Florez AB, Moreno JA, van Sinderen D, de los Reyes-Gavilan CG: Two membrane proteins from Bifidobacterium breve UCC2003 constitute an ABC-type multidrug transporter. Microbiology (Reading, England) 2006, 152(Pt 12):3497-3505.
57. Peschel A, Sahl HG: The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nature reviews Microbiology 2006, 4(7):529-536.
58. Boll M, Radziejewska-Lebrecht J, Warth C, Krajewska-Pietrasik D, Mayer H: 4-Amino-4-deoxy-L-arabinose in LPS of enterobacterial R-mutants and its possible role for their polymyxin reactivity. FEMS immunology and medical microbiology 1994, 8(4):329-341.
59. Breazeale SD, Ribeiro AA, Raetz CR: Origin of lipid A species modified with 4-amino-4-deoxy-L-arabinose in polymyxin-resistant mutants of Escherichia coli. An aminotransferase (ArnB) that generates UDP-4-deoxyl-L-arabinose. The Journal of biological chemistry 2003, 278(27):24731-24739.
60. Macfarlane EL, Kwasnicka A, Ochs MM, Hancock RE: PhoP-PhoQ homologues in Pseudomonas aeruginosa regulate expression of the outer-membrane protein OprH and polymyxin B resistance. Molecular microbiology 1999, 34(2):305-316.
61. Young ML, Bains M, Bell A, Hancock RE: Role of Pseudomonas aeruginosa outer membrane protein OprH in polymyxin and gentamicin resistance: isolation of an OprH-deficient mutant by gene replacement techniques. Antimicrobial agents and chemotherapy 1992, 36(11):2566-2568.62. Groisman EA: The pleiotropic two-component regulatory system PhoP-PhoQ. Journal of bacteriology 2001, 183(6):1835-1842.
63. Mouslim C, Groisman EA: Control of the Salmonella ugd gene by three two-component regulatory systems. Molecular microbiology 2003, 47(2):335-344.
64. Manterola L, Moriyon I, Moreno E, Sola-Landa A, Weiss DS, Koch MH, Howe J, Brandenburg K, Lopez-Goni I: The lipopolysaccharide of Brucella abortus BvrS/BvrR mutants contains lipid A modifications and has higher affinity for bactericidal cationic peptides. Journal of bacteriology 2005, 187(16):5631-5639.
65. Mascher T, Helmann JD, Unden G: Stimulus perception in bacterial signal-transducing histidine kinases. Microbiology and molecular biology reviews : MMBR 2006, 70(4):910-938.
66. Wolanin PM, Thomason PA, Stock JB: Histidine protein kinases: key signal transducers outside the animal kingdom. Genome biology 2002, 3(10):REVIEWS3013.
67. Hohmann EL, Oletta CA, Killeen KP, Miller SI: phoP/phoQ-deleted Salmonella typhi (Ty800) is a safe and immunogenic single-dose typhoid fever vaccine in volunteers. The Journal of infectious diseases 1996, 173(6):1408-1414.
68. Bader MW, Navarre WW, Shiau W, Nikaido H, Frye JG, McClelland M, Fang FC, Miller SI: Regulation of Salmonella typhimurium virulence gene expression by cationic antimicrobial peptides. Molecular microbiology 2003, 50(1):219-230.
69. Bearson BL, Wilson L, Foster JW: A low pH-inducible, PhoPQ-dependent acid tolerance response protects Salmonella typhimurium against inorganic acid stress. Journal of bacteriology 1998, 180(9):2409-2417.
70. Brodsky IE, Ernst RK, Miller SI, Falkow S: mig-14 is a Salmonella gene that plays a role in bacterial resistance to antimicrobial peptides. Journal of bacteriology 2002, 184(12):3203-3213.
71. Garcia Vescovi E, Soncini FC, Groisman EA: Mg2+ as an extracellular signal: environmental regulation of Salmonella virulence. Cell 1996, 84(1):165-174.
72. Tamayo R, Ryan SS, McCoy AJ, Gunn JS: Identification and genetic characterization of PmrA-regulated genes and genes involved in polymyxin B resistance in Salmonella enterica serovar typhimurium. Infection and immunity 2002, 70(12):6770-6778.
73. Gunn JS, Miller SI: PhoP-PhoQ activates transcription of pmrAB, encoding a two-component regulatory system involved in Salmonella typhimurium antimicrobial peptide resistance. Journal of bacteriology 1996,178(23):6857-6864.
74. Winfield MD, Groisman EA: Phenotypic differences between Salmonella and Escherichia coli resulting from the disparate regulation of homologous genes. Proceedings of the National Academy of Sciences of the United States of America 2004, 101(49):17162-17167.
75. Kox LF, Wosten MM, Groisman EA: A small protein that mediates the activation of a two-component system by another two-component system. The EMBO journal 2000, 19(8):1861-1872.
76. Gunn JS, Lim KB, Krueger J, Kim K, Guo L, Hackett M, Miller SI: PmrA-PmrB-regulated genes necessary for 4-aminoarabinose lipid A modification and polymyxin resistance. Molecular microbiology 1998, 27(6):1171-1182.
77. Zhou Z, Ribeiro AA, Lin S, Cotter RJ, Miller SI, Raetz CR: Lipid A modifications in polymyxin-resistant Salmonella typhimurium: PMRA-dependent 4-amino-4-deoxy-L-arabinose, and phosphoethanolamine incorporation. The Journal of biological chemistry 2001, 276(46):43111-43121.
78. Wang WB, Chen IC, Jiang SS, Chen HR, Hsu CY, Hsueh PR, Hsu WB, Liaw SJ: Role of RppA in the regulation of polymyxin b susceptibility, swarming, and virulence factor expression in Proteus mirabilis. Infection and immunity 2008, 76(5):2051-2062.
79. Raetz CR, Whitfield C: Lipopolysaccharide endotoxins. Annual review of biochemistry 2002, 71:635-700.
80. Beynon LM, Dumanski AJ, McLean RJ, MacLean LL, Richards JC, Perry MB: Capsule structure of Proteus mirabilis (ATCC 49565). Journal of bacteriology 1992, 174(7):2172-2177.
81. Rozalski A, Sidorczyk Z, Kotelko K: Potential virulence factors of Proteus bacilli. Microbiology and molecular biology reviews : MMBR 1997, 61(1):65-89.
82. Soo PC, Wei JR, Horng YT, Hsieh SC, Ho SW, Lai HC: Characterization of the dapA-nlpB genetic locus involved in regulation of swarming motility, cell envelope architecture, hemolysin production, and cell attachment ability in Serratia marcescens. Infection and immunity 2005, 73(9):6075-6084.
83. Moore RA, Chan L, Hancock RE: Evidence for two distinct mechanisms of resistance to polymyxin B in Pseudomonas aeruginosa. Antimicrobial agents and chemotherapy 1984, 26(4):539-545.
84. Beynon LM, Griffith DW, Richards JC, Perry MB: Characterization of the lipopolysaccharide O antigens of Actinobacillus pleuropneumoniae serotypes 9 and 11: antigenic relationships among serotypes 9, 11, and 1.Journal of bacteriology 1992, 174(16):5324-5331.
85. Peerbooms PG, Verweij AM, MacLaren DM: Vero cell invasiveness of Proteus mirabilis. Infection and immunity 1984, 43(3):1068-1071.
86. Fukuoka T, Masuda N, Takenouchi T, Sekine N, Iijima M, Ohya S: Increase in susceptibility of Pseudomonas aeruginosa to carbapenem antibiotics in low-amino-acid media. Antimicrobial agents and chemotherapy 1991, 35(3):529-532.
87. Campos MA, Vargas MA, Regueiro V, Llompart CM, Alberti S, Bengoechea JA: Capsule polysaccharide mediates bacterial resistance to antimicrobial peptides. Infection and immunity 2004, 72(12):7107-7114.
88. Schweizer HP, Hoang TT: An improved system for gene replacement and xylE fusion analysis in Pseudomonas aeruginosa. Gene 1995, 158(1):15-22.
89. Ernst RK, Guina T, Miller SI: How intracellular bacteria survive: surface modifications that promote resistance to host innate immune responses. The Journal of infectious diseases 1999, 179 Suppl 2:S326-330.
90. Bouhss A, Trunkfield AE, Bugg TD, Mengin-Lecreulx D: The biosynthesis of peptidoglycan lipid-linked intermediates. FEMS microbiology reviews 2008, 32(2):208-233.
91. Burtnick MN, Woods DE: Isolation of polymyxin B-susceptible mutants of Burkholderia pseudomallei and molecular characterization of genetic loci involved in polymyxin B resistance. Antimicrobial agents and chemotherapy 1999, 43(11):2648-2656.
92. Sauret-Gueto S, Ramos-Valdivia A, Ibanez E, Boronat A, Rodriguez-Concepcion M: Identification of lethal mutations in Escherichia coli genes encoding enzymes of the methylerythritol phosphate pathway. Biochemical and biophysical research communications 2003, 307(2):408-415.
93. Lin CS, Horng JT, Yang CH, Tsai YH, Su LH, Wei CF, Chen CC, Hsieh SC, Lu CC, Lai HC: RssAB-FlhDC-ShlBA as a major pathogenesis pathway in Serratia marcescens. Infection and immunity 2010, 78(11):4870-4881.
94. Miller SI, Ernst RK, Bader MW: LPS, TLR4 and infectious disease diversity. Nature reviews Microbiology 2005, 3(1):36-46.
95. Yan A, Guan Z, Raetz CR: An undecaprenyl phosphate-aminoarabinose flippase required for polymyxin resistance in Escherichia coli. The Journal of biological chemistry 2007, 282(49):36077-36089.
96. Jiang SS, Liu MC, Teng LJ, Wang WB, Hsueh PR, Liaw SJ: Proteus mirabilis pmrI, an RppA-regulated gene necessary for polymyxin B resistance, biofilm formation, and urothelial cell invasion. Antimicrobial agents and chemotherapy 2010, 54(4):1564-1571.97. Winfield MD, Latifi T, Groisman EA: Transcriptional regulation of the 4-amino-4-deoxy-L-arabinose biosynthetic genes in Yersinia pestis. The Journal of biological chemistry 2005, 280(15):14765-14772.
98. Groisman EA, Kayser J, Soncini FC: Regulation of polymyxin resistance and adaptation to low-Mg2+ environments. Journal of bacteriology 1997, 179(22):7040-7045.
99. Gunn JS: The Salmonella PmrAB regulon: lipopolysaccharide modifications, antimicrobial peptide resistance and more. Trends in microbiology 2008, 16(6):284-290.
100. Zwir I, Shin D, Kato A, Nishino K, Latifi T, Solomon F, Hare JM, Huang H, Groisman EA: Dissecting the PhoP regulatory network of Escherichia coli and Salmonella enterica. Proceedings of the National Academy of Sciences of the United States of America 2005, 102(8):2862-2867.
101. Gustafson CE, Kaul S, Ishiguro EE: Identification of the Escherichia coli lytB gene, which is involved in penicillin tolerance and control of the stringent response. Journal of bacteriology 1993, 175(4):1203-1205.
102. McAteer S, Coulson A, McLennan N, Masters M: The lytB gene of Escherichia coli is essential and specifies a product needed for isoprenoid biosynthesis. Journal of bacteriology 2001, 183(24):7403-7407.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65488-
dc.description.abstractSerratia marcescens屬於腸內桿菌科 (Enterobacteriaceae),為革蘭氏陰性菌,除了感染尿道、呼吸道外,也可能造成菌血症、腦膜炎等疾病。多黏菌素B (Polymyxin B,後續簡稱為PB) 屬cationic antimicrobial peptide的一種,常用於治療multidrug-resistant革蘭氏陰性菌的感染。PB結構具有polycationic peptide ring,故可利用它所帶的正電與陰性菌lipidA上的負電做結合,進而造成膜的瓦解。在臨床中部分S. marcescens對於PB具有抗藥性,但目前為止對其抗PB的機制及所調控的路徑了解並不多。因此本篇論文主要在尋找哪些基因會影響PB的感受性,並探討這些基因可能的抗藥機制;此外也分析PB感受性及virulence之間的關聯。
首先利用transposon mutagenesis篩選到3株對PB感受性有差異的菌株,3株mutants的生長皆不受到影響,且經MIC確認皆為PB-susceptible (WT=2500μg/ml,mutants=2μg/ml)。其中包括參與lipid A 4-amino-4-deoxy-L-arabinose (L-Ara4N) 修飾的ΔarnB、ΔarnC,以及isopreniod biosynthesis的ΔispH。在先前的研究中發現,E. coli及Salmonella可透過PhoP-PhoQ及PmrA-PmrB (E. coli為BasSR) 兩套雙組成系統調控下游基因pmr operon (E. coli為arn) 的表現,pmr operon負責lipid A上L-Ara4N的修飾,此修飾會降低LPS所帶的負電荷,進而減少PB的結合。從LPS binding assay發現3株突變株的LPS皆較容易與PB結合 (ispH因為影響isopreniod的合成造成L-Ara4N的修飾受到阻礙)。在reporter assay中,野生株在低濃度Mg2+、PB、酸性 (三者皆為PhoP的訊號) 環境下,arn operon會被誘導而有較高的activity,phoP突變株則無此現象,另外在有PB的情況下,野生株經過低濃度Mg2+、酸性處理後有較高的存活率 (phoP突變株則無),而從EMSA (electrophoretic mobility shift assay) 的結果得到PhoP可以直接結合至arn operon 的promoter上進而調控arn基因的表現,因此推測Serratia可能透過雙組成系統造成其PB的抗藥性增加。在phenotype的分析中,ΔarnB、ΔarnC在cell invasion的能力降低,ΔispH在外膜蛋白部分則呈現與WT不同的profile,其餘的phenotype如biofilm、SDS感受性則與WT無明顯差異。
總結上述,在Serratia marcescens中arnB、arnC,及ispH皆會影響到LPS的修飾,造成Serratia對於PB具有抗性。而PhoP-PhoQ這個雙組成系統則是做為arnB、arnC基因的regulator,當有訊號因子 (低濃度Mg2+、PB、酸性) 存在時,PhoP被活化爾後結合至arn operon 的promoter,造成arn基因的表現,這也是細菌在面對外在壓力時藉由基因調控所行使的反應。
zh_TW
dc.description.abstractSerratia marcescens is a Gram-negative,facultative anaerobe bacterium and a member of the family Enterobacteriaceae. It can cause infection in several sites,including the urinary tract、respiratory tract,besides it’s a rare cause of bacteremia and meningitis. Polymyxin B (PB) is a kind of cationic antimicrobial peptides (CAMPs),which could be used for multidrug-resistant Gram-negative infections. PB is composed of a polycationic peptide ring which have positive charge,it can bind negative charged portion of LPS such as lipid A and core and then alter the membrane integrity by solubilization or pore formation. S. marcescens isolates were resistant to PB in clinical reports,but the mechanisms resistance to PB in S. marcescens still unknown. As a result,the purpose of this thesis is to identify which genes involved in PB susceptibility and explore the mechanisms of these genes. Moreover,analyzing the association between PB susceptibility and virulence factors.
Three unique PB-sensitive S. marcescens mutants were identified (ΔarnB、ΔarnC、ΔispH) and they had the same growth curve with wild-type. These mutants were over 1000-fold more sensitive to PB than wild-type (WT=2500μg/ml,mutants=2μg/ml). Analysis of the amino acid sequence indicated that arnB、arnC were necessary for the biosynthesis and addition of 4-aminoarabinose (Ara4N) to the 4’ phosphate of lipid A. Besides,ispH participated in isopreniod biosynthesis. Previous studies indicated that Salmonella and E. coli can positively control the pmr (E. coli named arn) operon at the transcriptional level by PhoP-PhoQ and PmrA-PmrB (E. coli named BasSR) two-component systems. The pmr operon is involved in LPS modification,a modification which contributes to a reduction in the net negative charge of LPS and consequently decreases attraction of PB. According to LPS binding assay,LPS from all mutants bound more PB than wild-type (IspH defect block the synthesis of L-Ara4N ).
Reporter assay indicated that low Mg2+、PB and acidic pH (PhoPQ could sense those signals) could enhance the transcription of arn operon in wild-type (ΔphoP failed to do so ),moreover,wild-type (ΔphoP failed to do so either ) grown at acidic pH (or low Mg2+ ) was more resistant to PB than organisms grown at neutral pH (or high Mg2+ ). Here we showed that PhoP could mediate the induction of arn operon,an electrophoretic mobility shift assay (EMSA) demonstrated that PhoP could bind directly to the putative arn promoter. As a result,we assumed that S. marcescens resistant to polymyxin B might controlled by PhoP-PhoQ two-component system. Finally,we assayed the virulence factors of these mutants,wild-type had greater cell invasion ability than ΔarnB、ΔarnC,ΔispH present a different profile of outermembrane protein compared with wild-type. Other phenotype (biofilm、SDS susceptibility etc.) had no significant difference between wild-type and mutants.
In conclusion,ΔarnB、ΔarnC、ΔispH affected LPS modification,causing PB resistance in S. marcescens. Depend on our finding,PhoP-PhoQ two-component system acted as a regulator of arnB、arnC,on sensing activating signals (low Mg2+、PB and acidic pH),PhoPQ directly enhanced the transcription of arn operon and finally triggered LPS modification . This is a instance that microbes are able to sense and respond to their environment primarily through the use of two-component regulatory systems.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:46:07Z (GMT). No. of bitstreams: 1
ntu-101-R99424031-1.pdf: 2773377 bytes, checksum: 4eb576a23bb758d0f9456e36b49fa7c1 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents目錄 ................................................................................................................................ i
摘要 ............................................................................................................................... 1
Abstract .......................................................................................................................... 3
第一章 緒論 ................................................................................................................. 5
第一節 靈菌 (Serratia marcescens)介紹 ............................................................. 5
第二節 多黏菌素B (Polymyxin B)及抗藥機轉的介紹 ...................................... 8
第三節 脂多醣 (Lipopolysaccharides;LPSs)的介紹 ...................................... 13
第四節 研究動機與目的 .................................................................................... 14
第五節 實驗設計 ................................................................................................ 14
第二章 實驗材料與方法 ........................................................................................... 15
第一節 實驗材料 ................................................................................................ 15
第二節 跳躍子卡匣突變方法 (transposon mutagenesis) .................................. 18
第三節 突變基因之鑑定 (identification) .......................................................... 22
第四節 phoP和basR knockout方法 ................................................................. 31
第五節 分析突變株毒力因子 (virulence factor) 表現 .................................... 31
第六節 補償 (complementation) 試驗 .............................................................. 48
第七節 探究arn基因與regulator之關連性 .................................................... 51
第三章 實驗結果 ....................................................................................................... 60
第一節 利用跳躍子突變方法篩選基因並鑑定 ................................................ 60
第二節 突變株毒力因子表現之分析 ................................................................ 62
第三節 突變株與PB抗藥機制之探討及分析 ................................................. 64
第四節 臨床菌株與polymyxin B抗藥機制之探討及分析 ............................. 67
第四章 結論與討論 ................................................................................................... 68
第一節 結論 ........................................................................................................ 68
第二節 雙組成系統與polymyxin B抗性之關係 ............................................. 70
第三節 其他菌種arn、ispH基因之研究 ......................................................... 71
第四節 總結與未來方向 .................................................................................... 72
第五章 表 ................................................................................................................... 73
第六章 圖 ................................................................................................................... 79
第七章 附錄 ............................................................................................................... 93
參考資料 ................................................................................................................... 104
dc.language.isozh-TW
dc.subject靈菌zh_TW
dc.subject多黏菌素Bzh_TW
dc.subjectSerratia marcescensen
dc.subjectpolymyxin Ben
dc.title靈菌中影響多黏菌素B的感受性及毒力因子表現之基因研究zh_TW
dc.titleIdentification of genes involved in PB susceptibility and virulence factor expression of Serratia marcescensen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄧麗珍(Lee-Jene Teng),賴信志(Hsin-Chih Lai),楊翠青(TSUEY-CHING YANG),薛博仁(Po-Ren Hseuh)
dc.subject.keyword靈菌,多黏菌素B,zh_TW
dc.subject.keywordSerratia marcescens,polymyxin B,en
dc.relation.page113
dc.rights.note有償授權
dc.date.accepted2012-07-24
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫學檢驗暨生物技術學研究所zh_TW
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
2.71 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved