請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65459完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳湘鳳 | |
| dc.contributor.author | Keng-Ho Chen | en |
| dc.contributor.author | 陳鏗合 | zh_TW |
| dc.date.accessioned | 2021-06-16T23:44:24Z | - |
| dc.date.available | 2016-08-01 | |
| dc.date.copyright | 2012-07-31 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-07-24 | |
| dc.identifier.citation | Azuma, R. T., “A Survey of Augmented Reality,” Teleoperators and Virtual Environments 6, 4, pp. 355-385, August 1997
Human Interface Technology Laboratory at the University of Washington : http://www.hitl.washington.edu Kato, H., Billinghurst, M., Poupyrev, I., Imamoto, K., Tachibana, K., “Virtual Object Manipulation on a Table-Top AR Environment,” Augmented Reality, 2000. (ISAR 2000), Proceedings IEEE and ACM International Symposium, pp. 111-119, 2000 Liverani, A., Amati, G., Caligiana, G., “A CAD-augmented Reality Integrated Environment for Assembly Sequence Check and Interactive Validation,” Concurrent Engineering, Vol. 12, No. 1, pp. 67-77, March 2004 Livingston, M.A, Zanbaka, C., Swan, J.E.II, Smallman, H.S., “Objective Measures for the Effectiveness of Augmented Reality,” IEEE Virtual Reality 2005, pp 287-288, March 2005 Lee, T., Hollerer, T., “Handy AR: Markerless Inspection of Augmented Reality Objects Using Fingertip Tracking,” Wearable Computers, 2007 11th IEEE International Symposium, pp. 83-90, October 2007 Lee, T., Hollerer, T., “Multithreaded Hybrid Feature Tracking for Markerless Augmented Reality,” IEEE Transactions on Visualization and Computer Graphics, Vol. 15, No. 3, May 2009 Lin, L., Wang, Y., Liu, Y., Xiong, C., Zeng, K., ”Marker-less registration based on template tracking for augmented reality,” MULTIMEDIA TOOLS AND APPLICATIONS, Vol. 41, No. 2, pp. 235-252, 2009 Martin, A., Adan, A., “3D real-time positioning for autonomous navigation using a nine-point landmark,” Pattern Recognition, Vol. 45, Issue 1, pp. 578-595, January 2012 Ong, S.K., Pang, Y., Nee, A.Y.C., “Augmented Reality Aided Assembly Design and Planning,” CIRP Annals – Manufacturing Technology, Vol. 56, Issue 1, pp. 49-52, 2007 Ong, S.K., Yuan, M.L., Nee, A.Y.C., “Augmented reality applications in manufacturing: a survey,” International Journal of Production Research, Vol. 46, No. 10, pp. 2707-2742, May 2008 Pang, Y., Nee, A.Y.C., Ong, S.K., Yuan, M., “Assembly feature design in an augmented reality environment,” Assembly Automation, Vol. 26, Iss: 1, pp. 34-43, ISSN 0144-5154, 2006 Philipes : http:// www.philips.com.tw Raghavan, V., Molineros, J., Sharma, R., “Interactive Evaluation of Assembly Sequences Using Augmented Reality,” IEEE Transactions on Robotics and Automation, Vol. 15, No. 3, June 1999 Schwald, B., Laval, B., “An Augmented Reality System for Training and Assistance to Maintenance in the Industrial Context,” Journal of WSCG, Vol. 11, No. 1., ISSN 1213-6972, WSCG’2003 Song, J., Jia, Q., Sun, H., Gao, X., “Study on the Perception Mechanism and Method of Virtual and Real Objects in Augmented Reality Assembly Environment,” Industrial Electronics and Applications, 2009. ICIEA 2009. 4th IEEE Conference, pp. 1452-1456, May 2009 Tsai, R. Y., “A Versatile Camera Calibration Technique for High-Accuracy 3D Machine Vision Metrology Using Off-the-Shelf TV Cameras and Lenses,” IEEE Journal of Robotics and Automation, Vol. RA-3, No. 4, August 1987 Wiki : http://en.wikipedia.org Zhang, Z., “A Flexible New Technique for Camera Calibration,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 22, No. 11, November 2000 Zhang, J., Ong, S.K., Nee, A.Y.C., “AR-Assisted in situ Machining Simulation: Architecture and Implementation,” VRCAI’08 Proceedings of The 7th ACM SIGGRAPH International Conference on Virtual-Reality Continuum and Its Applications in Industry, No. 26, 2008 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65459 | - |
| dc.description.abstract | 擴增實境(Augmented Reality, AR)是將虛擬物件與真實物件在電腦產生之影像場景下做結合之技術。其中無標記的追蹤方法是使用真實物件當追蹤目標,將虛擬物件擺放至電腦影像場景中。本研究的目標是建立一個以電腦視覺為基礎之無標記追蹤方法。
研究方法使用主成分分析法(Principal Component Analysis, PCA)與平方預測誤差(Squared Prediction Error, SPE),從真實物件的顏色特徵取得閥值,進行追蹤。該方法使用顏色特徵將虛擬物件放置於電腦影像場景中。實驗結果顯示,該方法可用於偵測顏色特徵,估計攝影機之內部參數與外部參數,並在即時電腦影像中建立擴增實境座標系統。 實驗結果中,將真實顏色物件放置於電腦影像場景中,使用四個或更多的真實顏色物件,在部分真實顏色物件被遮蔽時,還是可以進行攝影機的姿態計算,建立擴增實境座標系統。使用有限制條件之計算公式來測量追蹤之精確度,藉由真實顏色物件在影像中之位置座標,計算出真實顏色物件於真實空間中之位置座標。實驗結果顯示,在邊長為30公分之立方體空間中,該方法的誤差於為0.3公分左右。實驗結果顯示,該方法是靈活、快速且精確。 | zh_TW |
| dc.description.abstract | The goal of augmented reality (AR) research is to combine virtual objects with real objects in computer generated scenes. Markerless tracking methods use real object features to place virtual objects in computer generated scenes. The goal of this research study is to create a vision-based Markerless tracking method.
The method uses principal component analysis (PCA), squared prediction error (SPE) calculation, and feature extraction thresholds to extract color features from real objects. The method uses color feature to place virtual objects in computer generated scenes. Experimental results show the method can be used to detect color features, estimate camera pose parameters, and create 3D coordinate systems in real-time video camera images. Experimental results were achieved by adding real colored objects to computer generated scenes. Four or more real colored objects were added to computer generated scenes, to handle occlusion effects for different camera pose parameters. A constraint function was used to measure tracking precision. The constraint function projects real object space and compares real object space feature points to image space feature point to determine tracking precision. Experimental results show that the method can be used to place virtual objects with, 0.3 cm precision in a 30 cm x 30 cm x 30 cm computer generated scene. Experimental results show that the method is flexible, fast, and precise. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T23:44:24Z (GMT). No. of bitstreams: 1 ntu-101-R99522628-1.pdf: 5544771 bytes, checksum: dc87f2404965c42ab1c65689cd46cebf (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 摘要 iii ABSTRACT iv 目錄 v 圖目錄 vii 表目錄 xii Chapter 1 緒論 1 1.1 研究背景與動機 1 1.2 研究內容與目的 3 Chapter 2 文獻回顧 5 2.1 擴增實境(Augmented Reality) 5 2.2 攝影機校正(Camera Calibration) 7 2.3 追蹤(Tracking) 13 2.3.1 標記(Marker) 14 2.3.2 無標記(Markerless) 21 Chapter 3 擴增實境座標系統建立方法 26 3.1 攝影機位置與角度判斷 27 3.2 主成份分析法數學模型 34 3.3 座標轉換穩定性 39 3.4 特徵點真實座標可變性 41 Chapter 4 實驗規劃與流程 45 4.1 實驗器材與設備 45 4.2 實驗數據取得方式 47 4.3 攝影機位置與角度判斷運作流程 49 4.4 主成份分析法數學模型運作流程 50 4.5 座標轉換穩定性運作流程 51 4.6 特徵點真實座標可變性運作流程 53 Chapter 5 實驗結果與討論 55 5.1 攝影機位置與角度判斷之實驗結果 55 5.2 主成份分析法數學模型之實驗結果 58 5.2.1 HSV分析結果 58 5.2.2 RGB分析結果 66 5.3 座標轉換穩定性之實驗結果 91 5.4 特徵點真實座標可變性之實驗結果 95 Chapter 6 結論與未來展望 109 6.1 結論 109 6.2 未來展望 110 REFERENCE 111 | |
| dc.language.iso | zh-TW | |
| dc.subject | 精確 | zh_TW |
| dc.subject | 無標記追蹤 | zh_TW |
| dc.subject | 擴增實境 | zh_TW |
| dc.subject | 遮蔽 | zh_TW |
| dc.subject | 靈活 | zh_TW |
| dc.subject | markless tracking | en |
| dc.subject | precision | en |
| dc.subject | flexible | en |
| dc.subject | Augmented reality | en |
| dc.subject | occlusion | en |
| dc.title | 以主成份分析法建立靈活之擴增實境座標系統 | zh_TW |
| dc.title | A Flexible Augmented Reality Coordinate System Based on Principal Component Analysis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳亮嘉,林清安 | |
| dc.subject.keyword | 擴增實境,無標記追蹤,遮蔽,精確,靈活, | zh_TW |
| dc.subject.keyword | Augmented reality,markless tracking,occlusion,precision,flexible, | en |
| dc.relation.page | 113 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-07-24 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 5.41 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
