Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用物理研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65446
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳智泓
dc.contributor.authorTzu-Kan Hsiaoen
dc.contributor.author蕭子綱zh_TW
dc.date.accessioned2021-06-16T23:43:27Z-
dc.date.available2013-07-27
dc.date.copyright2012-07-27
dc.date.issued2012
dc.date.submitted2012-07-24
dc.identifier.citation1. Abeles, B., Lattice thermal conductivity of disordered semiconductor alloys at high temperatures. Physical Review, 1963. 131(5): p. 1906-&.
2. Steele, M.C. and F.D. Rosi, Thermal conductivity and thermoelectric power of germanium-silicon alloys. Journal of Applied Physics, 1958. 29(11): p. 1517-1520.
3. Bera, C., N. Mingo, and S. Volz, Marked Effects of Alloying on the Thermal Conductivity of Nanoporous Materials. Physical Review Letters, 2010. 104(11): p. 115502.
4. Garg, J., et al., Role of Disorder and Anharmonicity in the Thermal Conductivity of Silicon-Germanium Alloys: A First-Principles Study. Physical Review Letters, 2011. 106(4): p. 045901.
5. Shi, L., et al., Large thermoelectric figure of merit in Si[sub 1 - x]Ge[sub x] nanowires. Applied Physics Letters, 2010. 96(17): p. 173108-3.
6. Kim, H., et al., Thermal conductivities of Si1-xGex nanowires with different germanium concentrations and diameters. Applied Physics Letters, 2010. 96(23): p. 233106.
7. Zhu, G.H., et al., Increased Phonon Scattering by Nanograins and Point Defects in Nanostructured Silicon with a Low Concentration of Germanium. Physical Review Letters, 2009. 102(19): p. 196803.
8. Shi, L., et al., Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device. J. Heat. Transfer., 2003. 125(5): p. 881-888.
9. Kent, A.J., et al., Acoustic phonon emission from a weakly coupled superlattice under vertical electron transport: Observation of phonon resonance. Physical Review Letters, 2006. 96(21): p. 215504.
10. Li, B.W., L. Wang, and G. Casati, Negative differential thermal resistance and thermal transistor. Applied Physics Letters, 2006. 88(14): p. 143501.
11. Ren, J. and B.W. Li, Emergence and control of heat current from strict zero thermal bias. Physical Review E, 2010. 81(2): p. 021111.
12. Zhang, L.F., et al., Topological Nature of the Phonon Hall Effect. Physical Review Letters, 2010. 105(22): p. 225901.
13. Balandin, A.A., Thermal properties of graphene and nanostructured carbon materials. Nature Materials, 2011. 10(8): p. 569-581.
14. Chiu, H.Y., et al., Ballistic phonon thermal transport in multiwalled carbon nanotubes. Physical Review Letters, 2005. 95(22): p. 226101.
15. Hu, M., et al., Significant Reduction of Thermal Conductivity in Si/Ge Core-Shell Nanowires. Nano Letters, 2011. 11(2): p. 618-623.
16. Yang, J.E., et al., Band-gap modulation in single-crystalline Si1-xGex nanowires. Nano Letters, 2006. 6(12): p. 2679-2684.
17. Chang, H.-K. and S.-C. Lee, The growth and radial analysis of Si/Ge core-shell nanowires. Applied Physics Letters, 2010. 97(25): p. 251912.
18. Ju, Y.S. and K.E. Goodson, Phonon scattering in silicon films with thickness of order 100 nm. Applied Physics Letters, 1999. 74(20): p. 3005-3007.
19. Alvarez-Quintana, J., et al., Thermal conductivity of thin single-crystalline germanium-on-insulator structures. International Journal of Heat and Mass Transfer, 2011. 54(9-10): p. 1959-1962.
20. Slack, G.A. and M.A. Hussain, The maximum possible conversion efficiency of silicon-germanium thermoelectric generators. Journal of Applied Physics, 1991. 70(5): p. 2694-2718.
21. Liu, C.-K., et al., Thermal conductivity of Si/SiGe superlattice films. Journal of Applied Physics, 2008. 104(11): p. 114301.
22. Minnich, A.J., et al., Modeling study of thermoelectric SiGe nanocomposites. Physical Review B, 2009. 80(15): p. 155327.
23. Meddins, H.R. and J.E. Parrott, Thermal and thermoelectric properties of sintered germanium-silicon alloys. Journal of Physics C-Solid State Physics, 1976. 9(7): p. 1263-1276.
24. Lu, Q., et al., Raman scattering from Si1-xGex alloy nanowires. Journal of Physical Chemistry C, 2008. 112(9): p. 3209-3215.
25. Prasher, R., Predicting the thermal resistance of nanosized constrictions. Nano Letters, 2005. 5(11): p. 2155-2159.
26. Rego, L.G.C. and G. Kirczenow, Quantized thermal conductance of dielectric quantum wires. Physical Review Letters, 1998. 81(1): p. 232-235.
27. Li, D.Y., et al., Thermal conductivity of individual silicon nanowires. Applied Physics Letters, 2003. 83(14): p. 2934-2936.
28. Chen, R.K., et al., Thermal conductance of thin silicon nanowires. Physical Review Letters, 2008. 101: p. 105501.
29. Hochbaum, A.I., et al., Enhanced thermoelectric performance of rough silicon nanowires. Nature, 2008. 451(7175): p. 163-165.
30. Wingert, M.C., et al., Thermal Conductivity of Ge and Ge-Si Core-Shell Nanowires in the Phonon Confinement Regime. Nano Letters, 2011. 11(12): p. 5507-5513.
31. Dhar, A., Heat conduction in a one-dimensional gas of elastically colliding particles of unequal masses. Physical Review Letters, 2001. 86(16): p. 3554-3557.
32. Li, B.W., H. Zhao, and B.B. Hu, Can disorder induce a finite thermal conductivity in 1D lattices? Physical Review Letters, 2001. 86(1): p. 63-66.
33. Chaudhuri, A., et al., Heat transport and phonon localization in mass-disordered harmonic crystals. Physical Review B, 2010. 81(6): p. 064301.
34. Wang, Z. and N. Mingo, Diameter dependence of SiGe nanowire thermal conductivity. Applied Physics Letters, 2010. 97(10).
35. Liu, L.C., et al., Curvature effect on the phonon thermal conductivity of dielectric nanowires. Journal of Applied Physics, 2009. 105(10): p. 104313.
36. Xu, Z.P. and M.J. Buehler, Strain controlled thermomutability of single-walled carbon nanotubes. Nanotechnology, 2009. 20(18): p. 185701.
37. O’Brien, R.C., et al., Safe radioisotope thermoelectric generators and heat sources for space applications. Journal of Nuclear Materials, 2008. 377(3): p. 506-521.
38. Zhang, Y.Q., et al., High Thermoelectric Figure-of-Merit in Kondo Insulator Nanowires at Low Temperatures. Nano Letters, 2011. 11(3): p. 1166-1170.
39. Majumdar, A., Thermoelectricity in semiconductor nanostructures. Science, 2004. 303(5659): p. 777-778.
40. Boukai, A.I., et al., Silicon nanowires as efficient thermoelectric materials. Nature, 2008. 451(7175): p. 168-171.
41. Tang, J.Y., et al., Holey Silicon as an Efficient Thermoelectric Material. Nano Letters, 2010. 10(10): p. 4279-4283.
42. Khelif, A., et al., Complete band gaps in two-dimensional phononic crystal slabs. Physical Review E, 2006. 74(4): p. 046610.
43. Yu, J.-K., et al., Reduction of thermal conductivity in phononic nanomesh structures. Nat Nano, 2010. 5(10): p. 718-721.
44. Mohammadi, S., et al., Complete phononic bandgaps and bandgap maps in two-dimensional silicon phononic crystal plates. Electronics Letters, 2007. 43(16): p. 898-899.
45. Bera, C., et al., Thermoelectric properties of nanostructured Si[sub 1 - x]Ge[sub x] and potential for further improvement. Journal of Applied Physics, 2010. 108(12): p. 124306-8.
46. An, Z., et al., Relaxed silicon--germanium-on-insulator substrates by oxygen implantation into pseudomorphic silicon germanium/silicon heterostructure. Applied Physics Letters, 2003. 82(15): p. 2452-2454.
47. Mohammadi, S., et al., Evidence of large high frequency complete phononic band gaps in silicon phononic crystal plates. Applied Physics Letters, 2008. 92(22): p. 221905-3.
48. Goettler, D.F., et al. Realization of a 33 GHz phononic crystal fabricated in a freestanding membrane. 2011. AIP.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65446-
dc.description.abstract在這篇論文中,我們量測了單根矽鍺合金奈米線的熱導率,藉此研究合金散射對於奈米結構的聲子特性所造成的影響。
如何利用結構加工來改變材料的聲子特性而讓材料的熱電轉換效率提高是一個很重要的研究課題。近來,有理論指出合金散射能夠阻絕高頻聲子在材料中的傳播,在微米尺度下造成彈道式的低頻聲子傳播。然而,目前尚未有任何實驗驗證這個特殊的現象。在這篇論文中,我們會用實驗來驗證這個現象。
在論文的第一部分,我會對這個研究主題做一個背景介紹,接著介紹在實驗用到的實驗裝置和技巧,例如:溫度控制系統,氣體注入裝置,還有實驗步驟與數據分析方法。
接著在第二部分,我會介紹研究”矽鍺奈米線中的彈道式聲子”的實驗與其結果。合金散射讓兩種不同結構的矽鍺奈米線中絕大部分的聲子無法傳播,只剩下0.04%的低頻聲子能夠傳熱。從矽鍺奈米線之長度和熱導率的關係圖中我們可以觀察到聲子平均自由徑可能超過8.3μm。另外,矽鍺奈米線直徑的大小幾乎不影響其熱導率。從溫度和熱導率的關係圖中可以推斷聲子間互相散射的效應對熱傳導的影響可以忽略,是合金散射主導了矽鍺奈米線的熱傳導特性。此外很特別的是這些低頻的彈道式聲子不會受到結構形變,區域性結構扭曲,和元素比例的影響。
最後第三部分,根據我們實驗結果,在合金材料中的聲子頻譜是低頻與窄頻帶的,這個特性使得我們有機會利用聲子晶體來製造擁有極低熱導率的矽鍺材料, 使其擁有高熱電效率(ZT>3)。我設計了一個有著蜂窩狀排列孔洞的矽鍺薄膜,此薄膜材料估計可以達到0.05 W/m-K的極低熱導率,並且在室溫下ZT~2.4與在1100K時ZT~8.8。
zh_TW
dc.description.abstractIn this thesis, I describe experimental thermal conductivity measurements on individual SiGe nanowires, which is a model alloy system that the role of alloy scatterings of phonons in nanostructures can be investigated for the first time.
Introducing efficient and yet independent methods of engineering phononic properties of a material are important topics for enhancing the energy conversion efficiency of thermoelectric materials. Recently, it has been pointed out theoretically that alloy scatterings of phonons can filter out most high frequency optical phonons and may lead to ballistic phonon phenomena at microscales. However, so far no experimental investigations have been conducted to verify the extraordinary effect. In my thesis, I will show direct evidence that the phonon mean free path of SiGe nanowires exceeds 8.3μm, which is the longest scale ever observed in all thermal conductors at room temperature.
In the first part of the thesis, I introduce the background of our research topic, and then I describe various techniques for experimental implementations, including setting up a temperature control system, building a gas injection system in the SEM chamber, designing experimental procedures and analyzing data.
In the second part of the thesis, I present the experimental findings of ballistic phonons in SiGe nanowires. Strong alloy scatterings in homo- or hetero-structures of SiGe nanowires effectively filter out most high frequency optical phonons but leave ~0.04% of the excited phonon modes responsible for heat conduction in the nanowire. It results in our observation of a linear length dependence of thermal conductivity with phonon mean free paths exceeding 8.3μm. In addition, thermal conductivities of SiGe nanowires exhibit weak diameter dependence. The absence of umklapp process features in the temperature dependence of thermal conductivity indicates that the phonon-phonon interactions are negligible and the heat transfer of SiGe nanowires is dominated by alloy scatterings. Remarkably, the low frequency ballistic phonons are immune to structural deformation, stacking faults, twin boundaries, local strains, and elemental variations.
Based on my result, the nearly monochromatic low frequency phonons in alloyed materials provide a unique opportunity to obtain much reduced thermal conductivities in SiGe via effects of phononic crystals. By introducing complete phononic band gap in a SiGe thin film, the thermal conductivity will likely reach 0.05 W/m-K at room temperature, and correspondingly, increase the figure of merit (ZT) of thermoelectric properties of SiGe. In the third part of my thesis, I design a porous thin film with 2D honeycomb structures. The ultralow thermal conductivity results from the phononic bandgap will likely realize ZT ~ 2.4 at room temperature and display a peak ZT = 8.8 at 1100 K.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:43:27Z (GMT). No. of bitstreams: 1
ntu-101-R99245005-1.pdf: 2284836 bytes, checksum: 4059577a2d690ae6b188a1b3c9592778 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsContents
口試委員審定書 I
致謝 II
摘要 III
Abstract IV
Contents VI
List of figures VII
List of table IX
Chapter 1. Introduction 1
1.1 Background 1
1.2 Experimental methods 3
Chapter 2. Ballistic phonons with ultra-long mean free path in SiGe alloy 9
2.1 Introduction 9
2.2 Experimental methods 11
2.3 Result and discussion 14
2.4 Summary 29
Chapter 3. High ZT alloy thin film thermoelectric device 30
3.1 Introduction 30
3.2 Design 32
3.3 Method 34
3.4 Discussion 35
3.5 Summary 36
Chapter 4. Summary 37
References 38
dc.language.isoen
dc.subject矽鍺奈米線zh_TW
dc.subject聲子zh_TW
dc.subject熱傳導zh_TW
dc.subject彈道式傳播zh_TW
dc.subject熱電材料zh_TW
dc.subject聲子晶體zh_TW
dc.subjectthermoelectricen
dc.subjectSilicon-Germanium nanowiresen
dc.subjectheat transferen
dc.subjectballistic transporten
dc.subjectphononic crystalen
dc.subjectphononen
dc.title矽鍺奈米線之熱傳導量測zh_TW
dc.titleThermal conductivity measurement on individual SiGe nanowiresen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.coadvisor張之威
dc.contributor.oralexamcommittee朱明文
dc.subject.keyword矽鍺奈米線,聲子,熱傳導,彈道式傳播,熱電材料,聲子晶體,zh_TW
dc.subject.keywordSilicon-Germanium nanowires,phonon,heat transfer,ballistic transport,thermoelectric,phononic crystal,en
dc.relation.page41
dc.rights.note有償授權
dc.date.accepted2012-07-24
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept應用物理所zh_TW
顯示於系所單位:應用物理研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
2.23 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved