Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工業工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65445
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周雍強(Yon-Chun Chou)
dc.contributor.authorTzu-Chien Kaoen
dc.contributor.author高子健zh_TW
dc.date.accessioned2021-06-16T23:43:22Z-
dc.date.available2017-07-27
dc.date.copyright2012-07-27
dc.date.issued2012
dc.date.submitted2012-07-24
dc.identifier.citation1.Alvarez, E. (2007). Multi-plant production scheduling in SMEs. Robotics and Computer-Integrated Manufacturing, 23(6), 608-613.
2.Cai, Y., Kutanoglu, E. and Hasenbein, J. (2011). Production Planning and Scheduling: Interaction and Coordination. In: Kempf, K.G., Keskinocak, P. and Uzsoy, R., ed. Planning Production and Inventories in the Extended Enterprise. New York: Springer, 152, 15-42.
3.Chou, Y.C. and Wu, C.S. (2002). Economic analysis and optimization of tool portfolio in semiconductor manufacturing. IEEE Transactions on Semiconductor Manufacturing, 15(4), 447-453.
4.Fargher, H.E., Kilgore, M.A., Kline, P.J. and Smith, R.A. (1994). A planner and scheduler for semiconductor manufacturing. IEEE Transactions on Semiconductor Manufacturing, 7(2), 117-126.
5.Frayret, J.M., D’Amours, S. and Montreuil, B. (2004). Coordination and control in distributed and agent-based manufacturing systems. Production Planning & Control: The Management of Operations, 15(1), 42-54.
6.Govind, N., Bullock, E.W., He, L., Iyer, B., Krishna, M. and Lockwood, C.S. (2008). Operations Management in Automated Semiconductor Manufacturing With Integrated Targeting, Near Real-Time Scheduling, and Dispatching. IEEE Transactions on Semiconductor Manufacturing, 21(3), 363-370.
7.Hopp, W.J. and Spearman, M.L. (2008). Factory Physics. New York: McGraw-Hill/Irwin.
8.Hwang, T.K. and Chang S.C. (2003). Design of a Lagrangian relaxation-based hierarchical production scheduling environment for semiconductor wafer fabrication. IEEE Transactions on Robotics and Automation, 19(4), 566-578.
9.Johri, P.K. (1994). Overlapping machine groups in semiconductor wafer fabrication. European Journal of Operational Research, 74(3), 509-518.
10.Manoj, U.V., Sriskandarajah, C. and Wagneur, E. (2010). Coordination in a two-stage production system: Complexity, conflict and cooperation. Computers & Operations Research, 39(6), 1245-1256.
11.Miragliotta, G. and Perona, M. (2005). Decentralised, multi-objective driven scheduling for reentrant shops: A conceptual development and a test case. European Journal of Operational Research, 167(3), 644-662.
12.Moon, C., Kim, J. and Hur, S. (2002). Integrated process planning and scheduling with minimizing total tardiness in multi-plants supply chain. Computers & Industrial Engineering, 43(1-2), 331-349.
13.Ouelhadj, D. and Petrovic, S. (2009). A survey of dynamic scheduling in manufacturing systems. Journal of Scheduling, 12(4), 417-431.
14.Quirk, M. and Serda, J. (2001). Semiconductor manufacturing technology. NJ: Prentice Hall.
15.Wei, J. and Krajewski, L. (2000). A model for comparing supply chain schedule integration approaches. International Journal of Production Research, 38(9), 2099-2123.
16.許瓊真 (2003),「以限制滿足系統建構協同規劃與排程模式」,碩士論文,國立臺灣大學工業工程學研究所。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65445-
dc.description.abstract機台製程能力的限制可由機台能力矩陣表示,當工作站面對的WIP到達組合與機台能力矩陣不一致時,機台之間工作負載分配會不均,工作站Throughput受到限制。本研究提出WIP分配方法,可推測最佳的WIP分配概率,使機台工作負載平衡,從中發現工作負載平衡存在極限,故WIP到達組合與機台能力矩陣不一致可能發生;並可利用此方法得到機台能力矩陣偏好的WIP組合。
  因上下游工作站機台能力矩陣相異,下游工作站面對的WIP到達組合為上游工作站排入排程的WIP組合,若此組合與下游工作站的機台能力矩陣不一致時,上游的排程限制了下游的Throughput,導致上游的Throughput較下游的Throughput高。本研究針對上下游Throughput失衡的問題,提出排程整合方法,整理上下游排程資訊,發展集合運算模型能協助找到所有改進途徑,可供下游工作站選擇成為改進方案以要求上游工作站微調排程的WIP組合,以改進下游工作站的Throughput。利用只考慮WIP到達為隨機過程的實驗,數據顯示原先上游的Throughput較下游的Throughput高;經由改進方案後,上游僅降低些微的Throughput,而下游的Throughput明顯改進,表示此方法可消弭上下游Throughput失衡的問題。
zh_TW
dc.description.abstractMachine capability matrix can be used to express the differences in capability between parallel machines. When the WIP arrival mix does not match the machine capability matrix, the workload of parallel machines cannot be balanced. Thus, the throughput of the shop composed of parallel machines is constrained. This research proposes WIP allocation method which can conjecture the optimal WIP allocation likelihood. However, there’s limit that the balanced workload cannot be reached. This method can help to derive the WIP mix preferred by the machine capability matrix.
  Belonging to different processes, shops have difference in machine capability matrix. The WIP arrival mix downstream shop faced with are what upstream shop scheduled to process. If the WIP mix that upstream shop scheduled does not match the machine capability matrix of downstream shop, the throughput is constrained by the schedule of upstream shop. Thus, the throughput in upstream shop is higher than that in downstream shop. This research points out the problem and proposes an integration method on upstream and downstream scheduling. It can help to find the way to improve the throughput of downstream shop. The downstream shop can select the improving policy to request the upstream shop to change the scheduled WIP mix.
We performed an experiment by considering only the stochastic processes of WIP Arrivals. The results indicate that the throughput of upstream shop is higher than that in downstream shop before using the improving policy. It also shows that the throughput of upstream shop may be decreased slightly by using improving policy. However, the throughput of downstream shop may be increased significantly. Thus, this method can mitigate the imbalanced throughput between upstream and downstream shop.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:43:22Z (GMT). No. of bitstreams: 1
ntu-101-R99546022-1.pdf: 1387453 bytes, checksum: 428908502e48166a01192d183ce72382 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents誌謝 II
中文摘要 III
ABSTRACT IV
目錄 V
圖目錄 VII
表目錄 IX
第一章 緒論 1
1.1 研究背景與動機 1
1.2 問題描述 2
1.2.1 工作站的機台能力矩陣不同 2
1.2.2 Inefficiency的來源 3
1.2.3 上下游throughput失衡 4
1.3 研究目的 5
1.4 研究架構 5
第二章 文獻回顧 6
2.1 供應鏈整合 6
2.1.1 資訊分享 6
2.1.2 供應鏈整合層次. 7
2.1.3 供應鏈排程整合. 8
2.2 工廠的生產控制與規劃的架構 9
2.3 分權式排程 13
2.4 製造活動的協同與控制 15
2.5 Overlapping Groups 17
第三章 WIP分配方法 19
3.1 WIP分配方法-只知機台能力矩陣 19
3.2 WIP分配方法-已知WIP到達率組合與機台能力矩陣 24
3.3 WIP分配方法驗證 27
第四章 整合方法與效益分析 31
4.1 排程環境設計與生產排程模組 31
4.2 目前的排程時序 33
4.3 整合方法 34
4.4 影響效益與成本的因素 42
4.4.1 工廠的生產績效與Buffer WIP level 42
4.4.2 整合方法的效益與成本 43
4.4.3 2種層次WIP Arrivals變異 43
4.5 實驗設計 44
4.6 實驗數據分析 53
4.6.1 Throughput 53
4.6.2 Flow Time 58
第五章 結論與建議 62
5.1 研究結論與貢獻 62
5.2 未來研究建議 62
Reference 64
Appendix 66
dc.language.isozh-TW
dc.subject機台能力矩陣zh_TW
dc.subject工件組合zh_TW
dc.subject上下游排程整合zh_TW
dc.subjectmachine capability matrixen
dc.subjectwork-in-process mixen
dc.subjectintegration of upstream and downstream schedulingen
dc.title工件組合對生產效率之影響與上下游排程整合zh_TW
dc.titleThe Effect of Work-in-process Mix on the Efficiency and the Integration of Upstream and Downstream Schedulingen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee許錫美(Hsi-Mei Hsu),黃奎隆(Kwei-Long Huang),游仁祈(Ren-Chi You)
dc.subject.keyword機台能力矩陣,工件組合,上下游排程整合,zh_TW
dc.subject.keywordmachine capability matrix,work-in-process mix,integration of upstream and downstream scheduling,en
dc.relation.page70
dc.rights.note有償授權
dc.date.accepted2012-07-24
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工業工程學研究所zh_TW
顯示於系所單位:工業工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
1.35 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved