請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65410
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳俊傑(Chun-Chieh Wu) | |
dc.contributor.author | Ho-Hsuan Wei | en |
dc.contributor.author | 魏閤萱 | zh_TW |
dc.date.accessioned | 2021-06-16T23:41:18Z | - |
dc.date.available | 2012-07-27 | |
dc.date.copyright | 2012-07-27 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-07-25 | |
dc.identifier.citation | Blackadar, A. K., 1976: Modeling the nocturnal boundary layer. Third Symp. on Atmospheric Turbulence, Diffusion, and Air Quality, Raleigh, NC, Amer. Meteor. Soc., 46-49.
______, 1979: High resolution models of the planetary boundary layer. Advances in Environmental Science and Engineering, J. Pfafflin and E. Ziegler, Eds., Vol. 1, No. 1, Gordon and Breach, 50-85. Deardorff, J. W., 1972: Numerical Investigation of Neutral and Unstable Planetary Boundary Layers. J. Atmos. Sci., 29, 91-115. Grell, G., J. Dudhia, and D. Stauffer, 1994: A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5). NCAR TECHNICAL NOTE(NCAR/TN-398), 122 pp. Guinn, T. A., and W. H. Schubert, 1993: Hurricane Spiral Bands. J. Atmos. Sci., 50, 3380-3403. Hendricks, E. A., W. H. Schubert, R. K. Taft, H. Wang, and J. P. Kossin, 2009: Life Cycles of Hurricane-Like Vorticity Rings. J. Atmos. Sci., 66, 705-722. ______, Schubert, W. H. , 2010: Adiabatic Rearrangement of Hollow PV Towers. Journal of advances in modeling earth systems, 2. ______, 2011: Potential Vorticity Mixing in Typhoons. AOGS 2011, Taipei, Taiwan. AS21-A015. Huang, T.-S., M. T. Montgomery, and C.-C. Wu, 2008: Sensitivity of hurricane intensity to planetary boundary layer schemes in a full physics three dimensional nonhydrostatic model. Proc. 28th conference on hurricanes and tropical meteorology. Amer. Meteor. Soc., Boston MA. 3A.5. Kossin, J. P., and W. H. Schubert, 2001: Mesovortices, Polygonal Flow Patterns, and Rapid Pressure Falls in Hurricane-Like Vortices. J. Atmos. Sci., 58, 2196-2209. Montgomery, M. T., and R. J. Kallenbach, 1997: A theory for vortex rossby-waves and its application to spiral bands and intensity changes in hurricanes. Q. J. R. Meteorol. Soc., 123, 435-465. ______, and J. Enagonio, 1998: Tropical Cyclogenesis via Convectively Forced Vortex Rossby Waves in a Three-Dimensional Quasigeostrophic Model. J. Atmos. Sci., 55, 3176-3207. ______, J. M. Hidalgo, P. D. Reasor, and S. Colorado State University.Dept. of Atmospheric, 2000: A semi-spectral numerical method for modeling the vorticity dynamics of the near-core region of hurricane-like vortices. Fort Collins, Colo. : Dept. of Atmospheric Science, Colorado State University. Nguyen, M. C., M. J. Reeder, N. E. Davidson, R. K. Smith, and M. T. Montgomery, 2011: Inner-core vacillation cycles during the intensification of Hurricane Katrina. Q. J. R. Meteorol. Soc., 137, 829-844. Nolan, D. S., and M. T. Montgomery, 2002: Nonhydrostatic, Three-Dimensional Perturbations to Balanced, Hurricane-like Vortices. Part I: Linearized Formulation, Stability, and Evolution. J. Atmos. Sci., 59, 2989-3020. Rozoff, C. M., J. P. Kossin, W. H. Schubert, and P. J. Mulero, 2009: Internal Control of Hurricane Intensity Variability: The Dual Nature of Potential Vorticity Mixing. J. Atmos. Sci., 66, 133-147. Schubert, W. H., M. T. Montgomery, R. K. Taft, T. A. Guinn, S. R. Fulton, J. P. Kossin, and J. P. Edwards, 1999: Polygonal Eyewalls, Asymmetric Eye Contraction, and Potential Vorticity Mixing in Hurricanes. J. Atmos. Sci., 56, 1197-1223. Wang, Y., 2002: Vortex Rossby Waves in a Numerically Simulated Tropical Cyclone. Part II: The Role in Tropical Cyclone Structure and Intensity Changes*. J. Atmos. Sci., 59, 1239-1262. Wu, C.-C., H.-J. Cheng, Y. Wang, and K.-H. Chou, 2009: A Numerical Investigation of the Eyewall Evolution in a Landfalling Typhoon. Mon. Wea. Rev., 137, 21-40. Yang, B., Y. Wang, and B. Wang, 2007: The Effect of Internally Generated Inner-Core Asymmetries on Tropical Cyclone Potential Intensity*. J. Atmos. Sci., 64, 1165-1188. Yau, M. K., Y. Liu, D.-L. Zhang, and Y. Chen, 2004: A Multiscale Numerical Study of Hurricane Andrew (1992). Part VI: Small-Scale Inner-Core Structures and Wind Streaks. Mon. Wea. Rev., 132, 1410-1433. Zhang, D., and R. A. Anthes, 1982: A High-Resolution Model of the Planetary Boundary Layer—Sensitivity Tests and Comparisons with SESAME-79 Data. Journal of Applied Meteorology, 21, 1594-1609. Zhang, F., N. Bei, R. Rotunno, C. Snyder, and C. C. Epifanio, 2007: Mesoscale Predictability of Moist Baroclinic Waves: Convection-Permitting Experiments and Multistage Error Growth Dynamics. J. Atmos. Sci., 64, 3579-3594. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65410 | - |
dc.description.abstract | 過去有許多研究針對渦旋的結構演變做探討,大部分的研究奠基在正壓的架構下,藉由線性穩定度理論去分析,發現到渦旋中的環狀結構常會發生正壓不穩定,造成環狀結構無法維持而碎裂成許多渦度塊,並在最終演變為單極的結構。而在本研究中,將此問題以三維全物理模式進行探討,發現按照正壓線性穩定度理論得以發生正壓不穩定且無法維持渦度環及位渦環結構的渦旋,在三維全物理模式的模擬中是可以維持的(控制組實驗),此結果顯示在三維全物理模式中渦旋的演變機制和正壓模式中的渦旋並不一致,這可能是因為在正壓模式中沒有考慮的非絕熱加熱作用項及三度空間環流場,造成三維全物理模式中位渦結構演變和正壓模式中渦度結構演變之重大差異。
為了進一步檢驗非絕熱加熱的作用,除了控制組實驗之外,我們設計四組敏感性實驗,改變模式中雲微物理參數化的潛熱釋放為原本的1.2倍、0.8倍、0.5倍以及維持原本量值(1.2LH, 0.8LH, 0.5LH, 1.0LH),去模擬控制組實驗中的位渦環狀結構在不同的非絕熱加熱下會有怎樣的演變。模擬結果顯示,在1.0LH實驗中環狀結構可以維持,且強度變化不大;在1.2LH實驗中,環狀結構亦可維持,但位渦強度增大;而在0.8LH實驗中,環狀結構很快消散,變成單極的結構,但最後位渦及渦度場又會再重新組織為強度較弱的環狀結構;在0.5LH實驗中,初始的位渦以及渦度環狀結構也很快變為單極的結構,且颱風最終會漸漸消散。這些敏感性實驗的結果顯示潛熱釋放對於颱風環狀結構演變扮演一定的角色。本研究也針對這些實驗進行軸對稱平均位渦收支分析,發現非絕熱加熱作用項和平流項對於位渦趨勢的貢獻量很大,但兩者的分布相似而符號相反,因此貢獻大致抵消。而在各組敏感性實驗中,當潛熱釋放被調整放大,不只是非絕熱作用項的貢獻增加,平流項的貢獻也會跟著增加,也就是說,兩者的作用還是會大致上抵消,剩下的小差值為實際貢獻位渦趨勢的量值。而去計算這些作用改變位渦的時間尺度時,會發現非絕熱加熱作用項以及平流項的作用時間尺度都較正壓不穩定發展所需的時間尺度還要短,因此這兩項作用對於位渦的影響會比正壓不穩定顯著,但由於兩者貢獻的符號相反以致於作用會互相抵消,整體的作用仍有待更定量化的分析。 除了這些作用,由於在三維全物理模式中,存在許多不對稱分量,也可能透過以下兩種機制使得環狀結構可以維持:因為非軸對稱的非絕熱加熱作用以及平流作用會影響原本沒有額外作用力的渦旋羅士培波的傳遞,進而影響環狀結構上兩個波動的交互作用,使得正壓不穩定難以發展,環狀結構不會破碎;此外,各垂直層波動的作用也可以影響其他垂直層的波動,進而影響其他層正壓不穩定的發展,讓環狀結構可以維持。 本研究顯示簡單正壓模式過度簡化了颱風渦旋中,三度空間環流以及強烈對流的潛熱作用,在三維全物理模式中,除了非絕熱加熱直接的作用之外,由於加熱會影響次環流,也會影響平流項的貢獻,此為間接對渦旋結構演變的作用。因此若探討三維全物理模式和簡單正壓模式中位渦環演變的差異,非絕熱加熱作用所額外造成的直接以及間接的作用皆需一起考慮。 | zh_TW |
dc.description.abstract | In this study, the evolution of ring structure in the 3-D full-physics model is examined. The ring in our simulation can sustain although the corresponding ring structure would break down according to the 2-D linear stability analysis. This suggests that the contribution of diabatic heating can result in significantly different vortex structure and regime as compared to those based on purely advection dynamics in the barotropic framework.
To evaluate the impact of convective heating on the PV ring evolution, sensitivity experiments are carried out by changing the latent heat release by a factor of 1.2, 0.8, and 0.5 in the microphysics scheme and also conducting an experiment with the original latent heat release. In these sensitivity experiments, the rings with less latent heat release breakdown while the rings with original and enhanced latent heat release sustain. When the diabatic heating and 3-D flows are taken into account, the results show very different vortex evolution paths from the previous studies. The PV budget analysis shows that both the contributions of diabatic heating and advection terms increase with the enhanced latent heat release. Although the time scale of contribution of diabatic heating is much shorter than that of barotropic instability, the time scale of advection term is comparable, yet with the opposite sign. These two terms would influence the PV field much faster than the growth of modal instability, though the integrated effect remains to be quantified. Two possible stabilizing mechanisms in a 3-D full-physics model are also suggested in which the wave propagation is affected by the asymmetric forcing terms and then the development of barotropic instability is disturbed. Results from this work are expected to provide some new physical insight into the role of convective heating on the typhoon eyewall vortex evolution. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T23:41:18Z (GMT). No. of bitstreams: 1 ntu-101-R99229004-1.pdf: 7665818 bytes, checksum: 2e2c3c400f88f5fab1ab451523c132fd (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 致謝 I
摘要 II 目錄 VI 第一章 研究動機及背景 1 1.1 颱風眼牆動力相關研究回顧 1 1.1.1 二維正壓乾模式相關研究回顧 2 1.1.2 三維乾模式相關研究回顧 4 1.2 加熱對眼牆的影響相關研究回顧 5 1.2.1 二維模式相關研究回顧 5 1.2.2 三維模式相關研究回顧 6 1.3 研究動機與目的 8 第二章 研究方法 10 2.1 模式簡介 10 2.2 模式設定及實驗設計 12 2.3 分析方法 13 2.3.1 軸對稱及非軸對稱結構分析 13 2.3.2 非絕熱加熱量計算 14 2.3.3 位渦收支分析 15 第三章 模擬結果分析 16 3.1 強度及結構演變 16 3.2 位渦環結構分析 16 3.2.1 正壓線性穩定度理論架構 16 3.2.2 非軸對稱結構分析 18 3.3 討論 19 第四章 敏感性測試實驗 20 4.1 實驗動機與目的 20 4.2 敏感性實驗設計 20 4.3 敏感性測試結果與討論 21 4.3.1 實驗結果 21 4.3.2 非軸對稱結構分析 22 4.3.3 分析與討論 23 4.3.3.1 位渦收支分析 23 4.3.3.2 時間特性尺度分析 25 4.4 非絕熱項作用比較 26 4.4.1 實驗設計 27 4.4.2 結果 27 4.5 雲微物理參數化比較 29 4.6 摩擦項作用探討 30 第五章 結論與未來工作 31 參考文獻 35 附錄 39 | |
dc.language.iso | zh-TW | |
dc.title | 潛熱釋放對颱風渦旋演變影響之理想數值模擬與動力機制分析 | zh_TW |
dc.title | The Role of Convective Heating in Tropical Cyclone Vortex Evolution - Idealized Three-Dimensional Full-Physics Model Simulations | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 王玉清(Yu-Qing Wang),游政谷(Cheng-Ku Yu) | |
dc.subject.keyword | 颱風,位渦環,正壓不穩定,理想模擬,對流加熱,潛熱釋放,非絕熱加熱, | zh_TW |
dc.subject.keyword | tropical cyclone,potential vorticity ring structure,barotropic instability,idealized simulation,convective heating,latent heat release,diabatic heating, | en |
dc.relation.page | 90 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-07-25 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 大氣科學研究所 | zh_TW |
顯示於系所單位: | 大氣科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 7.49 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。