請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65398完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 江伯倫 | |
| dc.contributor.author | Ning-Ling Huang | en |
| dc.contributor.author | 黃甯翎 | zh_TW |
| dc.date.accessioned | 2021-06-16T23:40:39Z | - |
| dc.date.available | 2012-09-19 | |
| dc.date.copyright | 2012-09-19 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-07-25 | |
| dc.identifier.citation | 1. Alamanos, Y. and A.A. Drosos, Epidemiology of adult rheumatoid arthritis. Autoimmun Rev, 2005. 4(3): p. 130-6.
2. MacGregor, A.J., H. Snieder, A.S. Rigby, M. Koskenvuo, J. Kaprio, K. Aho, et al., Characterizing the quantitative genetic contribution to rheumatoid arthritis using data from twins. Arthritis Rheum, 2000. 43(1): p. 30-7. 3. Gregersen, P.K., J. Silver, and R.J. Winchester, The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum, 1987. 30(11): p. 1205-13. 4. Brinkman, B.M., T.W. Huizinga, S.S. Kurban, E.A. van der Velde, G.M. Schreuder, J.M. Hazes, et al., Tumour necrosis factor alpha gene polymorphisms in rheumatoid arthritis: association with susceptibility to, or severity of, disease? Br J Rheumatol, 1997. 36(5): p. 516-21. 5. MacKay, K., A. Milicic, D. Lee, M. Tikly, S. Laval, J. Shatford, et al., Rheumatoid arthritis susceptibility and interleukin 10: a study of two ethnically diverse populations. Rheumatology (Oxford), 2003. 42(1): p. 149-53. 6. Silman, A.J., J. Newman, and A.J. MacGregor, Cigarette smoking increases the risk of rheumatoid arthritis. Results from a nationwide study of disease- discordant twins. Arthritis Rheum, 1996. 39(5): p. 732-5. 7. Karlson, E.W., I.M. Lee, N.R. Cook, J.E. Manson, J.E. Buring, and C.H. Hennekens, A retrospective cohort study of cigarette smoking and risk of rheumatoid arthritis in female health professionals. Arthritis Rheum, 1999. 42(5): p. 910-7. 8. Symmons, D.P ., C.R. Bankhead, B.J. Harrison, P . Brennan, E.M. Barrett, D.G. Scott, et al., Blood transfusion, smoking, and obesity as risk factors for the development of rheumatoid arthritis: results from a primary care-based incident case-control study in Norfolk, England. Arthritis Rheum, 1997. 40(11): p. 1955- 61. 9. Hazes, J.M., B.A. Dijkmans, J.P. Vandenbroucke, R.R. de Vries, and A. Cats, Lifestyle and the risk of rheumatoid arthritis: cigarette smoking and alcohol consumption. Ann Rheum Dis, 1990. 49(12): p. 980-2. 10. Stolt, P., C. Bengtsson, B. Nordmark, S. Lindblad, I. Lundberg, L. Klareskog, et al., Quantification of the influence of cigarette smoking on rheumatoid arthritis: results from a population based case-control study, using incident cases. Ann Rheum Dis, 2003. 62(9): p. 835-41. 11. Kobayashi, S., H. Okamoto, T. Iwamoto, Y. Toyama, T. Tomatsu, H. Yamanaka, et al., A role for the aryl hydrocarbon receptor and the dioxin TCDD in rheumatoid arthritis. Rheumatology (Oxford), 2008. 47(9): p. 1317-22. 12. Linos, A., J.W. Worthington, W.M. O'Fallon, and L.T. Kurland, The epidemiology of rheumatoid arthritis in Rochester, Minnesota: a study of incidence, prevalence, and mortality. Am J Epidemiol, 1980. 111(1): p. 87-98. 13. Nelson, J.L., K.A. Hughes, A.G. Smith, B.B. Nisperos, A.M. Branchaud, and J.A. Hansen, Maternal-fetal disparity in HLA class II alloantigens and the pregnancy-induced amelioration of rheumatoid arthritis. N Engl J Med, 1993. 329(7): p. 466-71. 14. Nalbandian, G. and S. Kovats, Understanding sex biases in immunity: effects of estrogen on the differentiation and function of antigen-presenting cells. Immunol Res, 2005. 31(2): p. 91-106. 15. Gilmore, W., L.P. Weiner, and J. Correale, Effect of estradiol on cytokine secretion by proteolipid protein-specific T cell clones isolated from multiple sclerosis patients and normal control subjects. J Immunol, 1997. 158(1): p. 446-51. 16. Franklin, E.C., H.R. Holman, H.J. Muller-Eberhard, and H.G. Kunkel, An unusual protein component of high molecular weight in the serum of certain patients with rheumatoid arthritis. J Exp Med, 1957. 105(5): p. 425-38. 17. Schellekens, G.A., B.A. de Jong, F.H. van den Hoogen, L.B. van de Putte, and W.J. van Venrooij, Citrulline is an essential constituent of antigenic determinants recognized by rheumatoid arthritis-specific autoantibodies. J Clin Invest, 1998. 101(1): p. 273-81. 18. Schellekens, G.A., H. Visser, B.A. de Jong, F.H. van den Hoogen, J.M. Hazes, F.C. Breedveld, et al., The diagnostic properties of rheumatoid arthritis antibodies recognizing a cyclic citrullinated peptide. Arthritis Rheum, 2000. 43(1): p. 155-63. 19. Muller-Ladner, U., J. Kriegsmann, B.N. Franklin, S. Matsumoto, T. Geiler, R.E. Gay, et al., Synovial fibroblasts of patients with rheumatoid arthritis attach to and invade normal human cartilage when engrafted into SCID mice. Am J Pathol, 1996. 149(5): p. 1607-15. 20. Pap, T., K.R. Aupperle, S. Gay, G.S. Firestein, and R.E. Gay, Invasiveness of synovial fibroblasts is regulated by p53 in the SCID mouse in vivo model of cartilage invasion. Arthritis Rheum, 2001. 44(3): p. 676-81. 21. Weinblatt, M.E., J.S. Coblyn, D.A. Fox, P.A. Fraser, D.E. Holdsworth, D.N. Glass, et al., Efficacy of low-dose methotrexate in rheumatoid arthritis. N Engl J Med, 1985. 312(13): p. 818-22. 22. Elliott, M.J., R.N. Maini, M. Feldmann, A. Long-Fox, P. Charles, P. Katsikis, et al., Treatment of rheumatoid arthritis with chimeric monoclonal antibodies to tumor necrosis factor alpha. Arthritis Rheum, 1993. 36(12): p. 1681-90. 23. Weinblatt, M.E., J.M. Kremer, A.D. Bankhurst, K.J. Bulpitt, R.M. Fleischmann, R.I. Fox, et al., A trial of etanercept, a recombinant tumor necrosis factor receptor:Fc fusion protein, in patients with rheumatoid arthritis receiving methotrexate. N Engl J Med, 1999. 340(4): p. 253-9. 24. Lipsky, P.E., D.M. van der Heijde, E.W. St Clair, D.E. Furst, F.C. Breedveld, J.R. Kalden, et al., Infliximab and methotrexate in the treatment of rheumatoid arthritis. Anti-Tumor Necrosis Factor Trial in Rheumatoid Arthritis with Concomitant Therapy Study Group. N Engl J Med, 2000. 343(22): p. 1594-602. 25. Friedenstein, A.J., J.F. Gorskaja, and N.N. Kulagina, Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol, 1976. 4(5): p. 267-74. 26. Romanov, Y.A., V.A. Svintsitskaya, and V.N. Smirnov, Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells, 2003. 21(1): p. 105-10. 27. In 't Anker, P.S., S.A. Scherjon, C. Kleijburg-van der Keur, W.A. Noort, F.H. Claas, R. Willemze, et al., Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood, 2003. 102(4): p. 1548-9. 28. Fukuchi, Y., H. Nakajima, D. Sugiyama, I. Hirose, T. Kitamura, and K. Tsuji, Human placenta-derived cells have mesenchymal stem/progenitor cell potential. Stem Cells, 2004. 22(5): p. 649-58. 29. Rodriguez, A.M., C. Elabd, E.Z. Amri, G. Ailhaud, and C. Dani, The human adipose tissue is a source of multipotent stem cells. Biochimie, 2005. 87(1): p. 125-8. 30. Dominici, M., K. Le Blanc, I. Mueller, I. Slaper-Cortenbach, F. Marini, D. Krause, et al., Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 2006. 8(4): p. 315-7. 31. Bartholomew, A., C. Sturgeon, M. Siatskas, K. Ferrer, K. McIntosh, S. Patil, et al., Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol, 2002. 30(1): p. 42-8. 32. Le Blanc, K., L. Tammik, B. Sundberg, S.E. Haynesworth, and O. Ringden, Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol, 2003. 57(1): p. 11-20. 33. Aggarwal, S. and M.F. Pittenger, Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood, 2005. 105(4): p. 1815-22. 34. Majumdar, M.K., M. Keane-Moore, D. Buyaner, W.B. Hardy, M.A. Moorman, K.R. McIntosh, et al., Characterization and functionality of cell surface molecules on human mesenchymal stem cells. J Biomed Sci, 2003. 10(2): p. 228- 41. 35. Di Nicola, M., C. Carlo-Stella, M. Magni, M. Milanesi, P.D. Longoni, P. Matteucci, et al., Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood, 2002. 99(10): p. 3838-43. 36. Tse, W.T., J.D. Pendleton, W.M. Beyer, M.C. Egalka, and E.C. Guinan, Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation, 2003. 75(3): p. 389-97. 37. Glennie, S., I. Soeiro, P.J. Dyson, E.W. Lam, and F. Dazzi, Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood, 2005. 105(7): p. 2821-7. 38. Benvenuto, F., S. Ferrari, E. Gerdoni, F. Gualandi, F. Frassoni, V. Pistoia, et al., Human mesenchymal stem cells promote survival of T cells in a quiescent state. Stem Cells, 2007. 25(7): p. 1753-60. 39. Krampera, M., S. Glennie, J. Dyson, D. Scott, R. Laylor, E. Simpson, et al., Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood, 2003. 101(9): p. 3722-9. 40. Augello, A., R. Tasso, S.M. Negrini, A. Amateis, F. Indiveri, R. Cancedda, et al., Bone marrow mesenchymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway. Eur J Immunol, 2005. 35(5): p. 1482-90. 41. Sato, K., K. Ozaki, I. Oh, A. Meguro, K. Hatanaka, T. Nagai, et al., Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood, 2007. 109(1): p. 228-34. 42. Rasmusson, I., O. Ringden, B. Sundberg, and K. Le Blanc, Mesenchymal stem cells inhibit the formation of cytotoxic T lymphocytes, but not activated cytotoxic T lymphocytes or natural killer cells. Transplantation, 2003. 76(8): p. 1208-13. 43. Maccario, R., M. Podesta, A. Moretta, A. Cometa, P. Comoli, D. Montagna, et al., Interaction of human mesenchymal stem cells with cells involved in alloantigen-specific immune response favors the differentiation of CD4+ T-cell subsets expressing a regulatory/suppressive phenotype. Haematologica, 2005. 90(4): p. 516-25. 44. Djouad, F., P. Plence, C. Bony, P. Tropel, F. Apparailly, J. Sany, et al., Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood, 2003. 102(10): p. 3837-44. 45. Deng, W., Q. Han, L. Liao, S. You, H. Deng, and R.C. Zhao, Effects of allogeneic bone marrow-derived mesenchymal stem cells on T and B lymphocytes from BXSB mice. DNA Cell Biol, 2005. 24(7): p. 458-63. 46. Corcione, A., F. Benvenuto, E. Ferretti, D. Giunti, V. Cappiello, F. Cazzanti, et al., Human mesenchymal stem cells modulate B-cell functions. Blood, 2006. 107(1): p. 367-72. 47. Krampera, M., L. Cosmi, R. Angeli, A. Pasini, F. Liotta, A. Andreini, et al., Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells, 2006. 24(2): p. 386-98. 48. Sotiropoulou, P.A., S.A. Perez, A.D. Gritzapis, C.N. Baxevanis, and M. Papamichail, Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells, 2006. 24(1): p. 74-85. 49. Spaggiari, G.M., A. Capobianco, S. Becchetti, M.C. Mingari, and L. Moretta, Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood, 2006. 107(4): p. 1484-90. 50. Zhang, W., W. Ge, C. Li, S. You, L. Liao, Q. Han, et al., Effects of mesenchymal stem cells on differentiation, maturation, and function of human monocyte- derived dendritic cells. Stem Cells Dev, 2004. 13(3): p. 263-71. 51. Jiang, X.X., Y. Zhang, B. Liu, S.X. Zhang, Y. Wu, X.D. Yu, et al., Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood, 2005. 105(10): p. 4120-6. 52. Nauta, A.J., A.B. Kruisselbrink, E. Lurvink, R. Willemze, and W.E. Fibbe, Mesenchymal stem cells inhibit generation and function of both CD34+-derived and monocyte-derived dendritic cells. J Immunol, 2006. 177(4): p. 2080-7. 53. Beyth, S., Z. Borovsky, D. Mevorach, M. Liebergall, Z. Gazit, H. Aslan, et al., Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood, 2005. 105(5): p. 2214-9. 54. Zappia, E., S. Casazza, E. Pedemonte, F. Benvenuto, I. Bonanni, E. Gerdoni, et al., Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood, 2005. 106(5): p. 1755-61. 55. Le Blanc, K., I. Rasmusson, B. Sundberg, C. Gotherstrom, M. Hassan, M. Uzunel, et al., Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet, 2004. 363(9419): p. 1439- 41. 56. Lee, R.H., M.J. Seo, R.L. Reger, J.L. Spees, A.A. Pulin, S.D. Olson, et al., Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/scid mice. Proc Natl Acad Sci U S A, 2006. 103(46): p. 17438-43. 57. Urban, V .S., J. Kiss, J. Kovacs, E. Gocza, V . V as, E. Monostori, et al., Mesenchymal stem cells cooperate with bone marrow cells in therapy of diabetes. Stem Cells, 2008. 26(1): p. 244-53. 58. Togel, F., Z. Hu, K. Weiss, J. Isaac, C. Lange, and C. Westenfelder, Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms. Am J Physiol Renal Physiol, 2005. 289(1): p. F31-42. 59. Ortiz, L.A., M. Dutreil, C. Fattman, A.C. Pandey, G. Torres, K. Go, et al., Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc Natl Acad Sci U S A, 2007. 104(26): p. 11002-7. 60. Gupta, N., X. Su, B. Popov, J.W. Lee, V. Serikov, and M.A. Matthay, Intrapulmonary delivery of bone marrow-derived mesenchymal stem cells improves survival and attenuates endotoxin-induced acute lung injury in mice. J Immunol, 2007. 179(3): p. 1855-63. 61. Parekkadan, B., D. van Poll, K. Suganuma, E.A. Carter, F. Berthiaume, A.W. Tilles, et al., Mesenchymal stem cell-derived molecules reverse fulminant hepatic failure. PLoS One, 2007. 2(9): p. e941. 62. Orlic, D., J. Kajstura, S. Chimenti, I. Jakoniuk, S.M. Anderson, B. Li, et al., Bone marrow cells regenerate infarcted myocardium. Nature, 2001. 410(6829): p. 701-5. 63. Li, Y., J. Chen, X.G. Chen, L. Wang, S.C. Gautam, Y.X. Xu, et al., Human marrow stromal cell therapy for stroke in rat: neurotrophins and functional recovery. Neurology, 2002. 59(4): p. 514-23. 64. Verburg, R.J., A.A. Kruize, F.H. van den Hoogen, W.E. Fibbe, E.J. Petersen, F. Preijers, et al., High-dose chemotherapy and autologous hematopoietic stem cell transplantation in patients with rheumatoid arthritis: results of an open study to assess feasibility, safety, and efficacy. Arthritis Rheum, 2001. 44(4): p. 754-60. 65. Snowden, J.A., J. Passweg, J.J. Moore, S. Milliken, P. Cannell, J. Van Laar, et al., Autologous hemopoietic stem cell transplantation in severe rheumatoid arthritis: a report from the EBMT and ABMTR. J Rheumatol, 2004. 31(3): p. 482-8. 66. Augello, A., R. Tasso, S.M. Negrini, R. Cancedda, and G. Pennesi, Cell therapy using allogeneic bone marrow mesenchymal stem cells prevents tissue damage in collagen-induced arthritis. Arthritis Rheum, 2007. 56(4): p. 1175-86. 67. Zheng, Z.H., X.Y. Li, J. Ding, J.F. Jia, and P. Zhu, Allogeneic mesenchymal stem cell and mesenchymal stem cell-differentiated chondrocyte suppress the responses of type II collagen-reactive T cells in rheumatoid arthritis. Rheumatology (Oxford), 2008. 47(1): p. 22-30. 68. Mao, F., W.R. Xu, H. Qian, W. Zhu, Y.M. Yan, Q.X. Shao, et al., Immunosuppressive effects of mesenchymal stem cells in collagen-induced mouse arthritis. Inflamm Res, 2010. 59(3): p. 219-25. 69. Schurgers, E., H. Kelchtermans, T. Mitera, L. Geboes, and P. Matthys, Discrepancy between the in vitro and in vivo effects of murine mesenchymal stem cells on T-cell proliferation and collagen-induced arthritis. Arthritis Res Ther, 2010. 12(1): p. R31. 70. Peister, A., J.A. Mellad, B.L. Larson, B.M. Hall, L.F. Gibson, and D.J. Prockop, Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential. Blood, 2004. 103(5): p. 1662-8. 71. Kafienah, W., S. Mistry, S.C. Dickinson, T.J. Sims, I. Learmonth, and A.P. Hollander, Three-dimensional cartilage tissue engineering using adult stem cells from osteoarthritis patients. Arthritis Rheum, 2007. 56(1): p. 177-87. 72. Tuan, R.S., Stemming cartilage degeneration: adult mesenchymal stem cells as a cell source for articular cartilage tissue engineering. Arthritis Rheum, 2006. 54(10): p. 3075-8. 73. Brand, D.D., A.H. Kang, and E.F. Rosloniec, Immunopathogenesis of collagen arthritis. Springer Semin Immunopathol, 2003. 25(1): p. 3-18. 74. Seki, N., Y. Sudo, T. Yoshioka, S. Sugihara, T. Fujitsu, S. Sakuma, et al., Type II collagen-induced murine arthritis. I. Induction and perpetuation of arthritis require synergy between humoral and cell-mediated immunity. J Immunol, 1988. 140(5): p. 1477-84. 75. Hess, A., R. Axmann, J. Rech, S. Finzel, C. Heindl, S. Kreitz, et al., Blockade of TNF-alpha rapidly inhibits pain responses in the central nervous system. Proc Natl Acad Sci U S A, 2011. 108(9): p. 3731-6. 76. Nishimoto, N., K. Yoshizaki, N. Miyasaka, K. Yamamoto, S. Kawai, T. Takeuchi, et al., Treatment of rheumatoid arthritis with humanized anti- interleukin-6 receptor antibody: a multicenter, double-blind, placebo-controlled trial. Arthritis Rheum, 2004. 50(6): p. 1761-9. 77. Weinblatt, M.E., E.C. Keystone, D.E. Furst, L.W. Moreland, M.H. Weisman, C.A. Birbara, et al., Adalimumab, a fully human anti-tumor necrosis factor alpha monoclonal antibody, for the treatment of rheumatoid arthritis in patients taking concomitant methotrexate: the ARMADA trial. Arthritis Rheum, 2003. 48(1): p. 35-45. 78. Bathon, J.M., R.W. Martin, R.M. Fleischmann, J.R. Tesser, M.H. Schiff, E.C. Keystone, et al., A comparison of etanercept and methotrexate in patients with early rheumatoid arthritis. N Engl J Med, 2000. 343(22): p. 1586-93. 79. Firestein, G.S., J.M. Alvaro-Gracia, and R. Maki, Quantitative analysis of cytokine gene expression in rheumatoid arthritis. J Immunol, 1990. 144(9): p. 3347-53. 80. Boissier, M.C., G. Chiocchia, N. Bessis, J. Hajnal, G. Garotta, F. Nicoletti, et al., Biphasic effect of interferon-gamma in murine collagen-induced arthritis. Eur J Immunol, 1995. 25(5): p. 1184-90. 81. Nakajima, H., H. Takamori, Y. Hiyama, and W. Tsukada, The effect of treatment with interferon-gamma on type II collagen-induced arthritis. Clin Exp Immunol, 1990. 81(3): p. 441-5. 82. Cooper, S.M., S. Sriram, and G.E. Ranges, Suppression of murine collagen- induced arthritis with monoclonal anti-Ia antibodies and augmentation with IFN-gamma. J Immunol, 1988. 141(6): p. 1958-62. 83. van Roon, J.A., J.L. van Roy, F.H. Gmelig-Meyling, F.P. Lafeber, and J.W. Bijlsma, Prevention and reversal of cartilage degradation in rheumatoid arthritis by interleukin-10 and interleukin-4. Arthritis Rheum, 1996. 39(5): p. 829-35. 84. Majumdar, M.K., M.A. Thiede, S.E. Haynesworth, S.P. Bruder, and S.L. Gerson, Human marrow-derived mesenchymal stem cells (MSCs) express hematopoietic cytokines and support long-term hematopoiesis when differentiated toward stromal and osteogenic lineages. J Hematother Stem Cell Res, 2000. 9(6): p. 841-8. 85. Choi, J.J., S.A. Yoo, S.J. Park, Y.J. Kang, W.U. Kim, I.H. Oh, et al., Mesenchymal stem cells overexpressing interleukin-10 attenuate collagen- induced arthritis in mice. Clin Exp Immunol, 2008. 153(2): p. 269-76. 86. Schrepfer, S., T. Deuse, H. Reichenspurner, M.P. Fischbein, R.C. Robbins, and M.P. Pelletier, Stem cell transplantation: the lung barrier. Transplant Proc, 2007. 39(2): p. 573-6. 87. Sutton, E.J., S.E. Boddington, A.J. Nedopil, T.D. Henning, S.G. Demos, R. Baehner, et al., An optical imaging method to monitor stem cell migration in a model of immune-mediated arthritis. Opt Express, 2009. 17(26): p. 24403-13. 88. Zhao, W., J.J. Li, D.Y. Cao, X. Li, L.Y. Zhang, Y. He, et al., Intravenous injection of mesenchymal stem cells is effective in treating liver fibrosis. World J Gastroenterol, 2012. 18(10): p. 1048-58. 89. Gonzalez, M.A., E. Gonzalez-Rey, L. Rico, D. Buscher, and M. Delgado, Treatment of experimental arthritis by inducing immune tolerance with human adipose-derived mesenchymal stem cells. Arthritis Rheum, 2009. 60(4): p. 1006- 19. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65398 | - |
| dc.description.abstract | 研究背景:
類風濕性關節炎 (Rheumatoid arthritis, RA) 為常見的自體免疫疾病。目前已 知許多免疫細胞參與此疾病的病理機制。在疾病初期,T 淋巴細胞被認為是導致 疾病發生與影響病程重要因子之一。間葉幹細胞 (Mesenchymal stem cells, MSCs) 為多潛能性幹細胞 (pluripotent stem cells),可由骨髓或其他組織中取得,具有自 我更新、繁衍並且可分化成多種不同的細胞與組織。近年許多文獻報告指出間葉 幹細胞具有免疫調節的能力。本篇研究希望了解間葉幹細胞在治療類風濕性關節 炎動物模式中的應用性。 實驗方法: 從小鼠骨髓中培養出間葉幹細胞,確認間葉幹細胞的表面標誌,並在體外培 養刺激其分化成骨細胞(osteocytes),軟骨細胞(chondrocytes) 與脂肪細胞 (adipocytes),此外利用在試管內測試間葉幹細胞的免疫抑制功能,更進一步利用 牛第二型膠原蛋白建立類風濕性關節炎的動物模式,在疾病進程中,以靜脈注射 方式給予間葉幹細胞,用以研究其治療效果。 實驗結果: 結果顯示,脾臟中的 T 淋巴球在 anti-CD 3/28 抗體刺激下,與間葉幹細胞共 同培養,間葉幹細胞能有效抑制 T 淋巴球分裂增生,確立其免疫調控的功能。給 予間葉幹細胞可有效改善類風濕性關節炎動物模式中的發炎反應,降低疾病嚴重 程度與細胞浸潤現象 ; 血清中,經過間葉幹細胞治療的小鼠體內所產生的介白素- 1β 濃度較低 ; 膝關節萃取出的蛋白質中,介白素-6 有顯著意義地降低 ; 經間葉幹 細胞治療的小鼠脾臟細胞,可產生較高干擾素-γ(interferon-γ)介白素-6 (interleukin-6, IL-6), 介白素-10 (interleukin-10, IL-10)。 結論: 本篇實驗結果顯示,間葉幹細胞在體外培養或動物實驗中都可有效調節免疫 反應,我們認為間葉幹細胞在類風濕性關節炎的治療中有減緩的效果,未來將進 一步研究其參與在此疾病的免疫調控機轉。 | zh_TW |
| dc.description.abstract | Background:
Rheumatoid arthritis (RA) is a common autoimmune disease in the world. A variety of immune cells are involved in pathogenic mechanism and progression of the disease. In the early stage of RA, T lymphocytes are regarded as one of crucial cells in the disease pathogenesis and are related to disease severity. Mesenchymal stem cells (MSCs) are pluripotent stem cells obtained from many tissues. MSCs can self-renew and differentiate into several lineages under stimulations. Recently, more and more studies have demonstrated that MSCs exert the immunoregulatory capacity. In this study, we aimed to examine whether MSCs can have potential therapeutic effect on collagen-induced arthritis (CIA) in rheumatoid arthritis murine model. Methods: We isolated MSCs from bone marrow of DBA/1J mice. MSCs were expanded, characterized by phenotypic analysis, and differentiated into osteocytes, chondrocytes, and adipocytes. Proliferation of T lymphocytes in the absence or presence of MSCs was performed to determine the immunosuppressive function of MSCs in vitro. To investigate the effect of MSCs on CIA animal model, we immunized mice with bovine type II collagen, and injected MSCs intravenously. Results: MSCs efficiently inhibited the anti-CD3/28-induced T cell proliferation and division. These data suggested that MSCs had the regulatory effect on inflammatory immune responses. MSCs administration can reduce the severity of arthritis and cell infiltration. The level of IL -1β was lower in the sera of MSC-treated mice than non MSC-treated group. IL-6 expression in knee protein extraction was decreased after mice receiving MSCs. Furthermore, the lymphocytes of MSC-treated mice secreted higher IFN-γ, IL-6, and IL-10. Conclusions: Our results demonstrated that MSCs could play a modulatory role in the immune responses both in vitro and in vivo. The delivery of MSCs in CIA animal model ameliorated the severity of arthritis. MSCs treatment can be used as a potential therapy for RA. However, further studies are required to clarify the immunoregulatory mechanisms mediated by MSCs treatment. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T23:40:39Z (GMT). No. of bitstreams: 1 ntu-101-R99450002-1.pdf: 111457374 bytes, checksum: f28ad108ec413b7a4399d4ef3e0fbf04 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | Contents
口試委員審定書 ............................................................ i 致謝 .................................................................................. ii 中文摘要 ....................................................................... iv Abstract .......................................................................... v Contents ........................................................................ vii Contents of Figures .......................................................... xi Chapter I Introduction................................................. 1 1. Overview of rheumatoid arthritis ................................................ 2 1.1 Epidemiology of rheumatoid arthritis................................ 2 1.2 Risk factors for rheumatoid arthritis.................................. 2 1.2.1 Genetic factors and rheumatoid arthritis ......................................... 2 1.2.2 Environmental factors and rheumatoid arthritis .............................. 3 1.2.3 Hormonal factors and rheumatoid arthritis...................................... 4 1.3 The pathophysiology of rheumatoid arthritis .................... 4 1.4 Pharmacotherapy for rheumatoid arthritis ......................... 5 2. Immunomodulatory potential of mesenchymal stem cells (MSCs) ..................... 6 2.1 Introduction of mesenchymal stem cells (MSCs)....................................... 6 2.2 The effects of mesenchymal stem cells (MSCs) on immune cells ............. 7 2.2.1 The interaction between MSCs and T cells ..................................... 7 2.2.2 The interaction between MSCs and B cells..................................... 9 2.2.3 The interaction between MSCs and natural killer (NK) cells ....... 10 2.2.4 The interaction between MSCS and dendritic cells (DCs)............ 10 2.3 The application of mesenchymal stem cells (MSCs) ............................... 11 3. Stem cell therapy and rheumatoid arthritis (RA)....................... 12 4. Hypothesis and specific aims .................................................... 13 Chapter II Materials and Methods .................................................... 14 Part 1. Materials.................................................... 15 1. Cell culture ....................................................... 15 1.1 Culture medium and buffers ............................................ 15 1.2 Flow cytometry ....................................... 16 1.3 Differentiation assay ........................................................ 17 1.4 Antigens, mitogens, and monoclonal antibodies (mAbs) used in cell culture ........................................................... 18 1.5 Proliferation Assay .......................................................... 18 1.6 CFSE assay ............................................. 18 2. Collagen-Induced Arthritis Animal Model................................ 19 2.1 Animals.............................................. 19 2.2 Reagents............................................. 19 2.3 Knee joints tissue protein extraction ............................... 19 2.4 Enzyme-linked immunosorbent assay (ELISA) ....................................... 20 Part 2. Methods......................................... 21 1. Identification of mesenchymal stem cells (MSCs).................... 21 1.1 Isolation and cultivation of mesenchymal stem cells (MSCs) ................ 21 1.2 Flow cytometry characterization of mesenchymal stem cells (MSCs) ... 21 1.3 Differentiation assays of mesenchymal stem cells (MSCs) .................... 22 1.4 CD3/28-induced T lymphocytes proliferation assay ............................... 23 1.5 CFSEassay............................................24 1.6 Determination of IL-1ra levels in MSCs–cultured medium .................... 24 2. The therapeutic effects of MSCs in CIA animal model ..................................... 25 2.1 Induction and treatment of collagen-induced arthritis (CIA) animal model ...................................... 25 2.2 Determination of CII-specific antibodies ....................... 26 2.3 Determination of cytokine levels in sera ........................ 27 2.4 Antigen-specificlymphocytesproliferation...................28 2.5 Cytokine production of lymphocytes culture supernatants ..................... 28 2.6 Cytokine production of knee joint tissue protein extraction.................... 29 2.7 Histological examination of mice hind limb ........................................... 30 3. Statisticalanalysis..............................31 Chapter III Results.................................... 32 1. Isolation, phenotypical characterization, and differentiation ability of mesenchymal stem cells (MSCs)................................................... 33 2. Effect of mesenchymal stem cells (MSCs) on anti-CD3/28-induced lymphocytes proliferation .......................................................... 33 3. Mesenchymal stem cells suppressed CD4+ T cells division............................... 34 4. IL-1ra were produced by Mesenchymal stem cells (MSCs) .............................. 34 5. Mesenchymal stem cells (MSCs) had no impact on the incidence of collagen- induced arthritis (CIA).......................................... 35 6. Administration of mesenchymal stem cells (MSCs) reduced clinical score and paw thickness of collagen-induced arthritis .................................. 35 7. Mesenchymal stem cells (MSCs) did not decrease the production of type II collagen(CII)-specific antibodies ............................................ 36 8. Mesenchymal stem cells (MSCs) delivery did not affect splenic lymphocytes proliferation ....................... 36 9. Mesenchymal stem cells (MSCs) elevated cytokine productions of splenic lymphocytes....................... 36 10. Mesenchymal stem cells (MSCs) did not affect sera cytokine levels .............. 37 11. Cytokine levels of knee protein extractions ............................ 37 12. Histological images of paw stained with H&E ....................... 38 Chapter IV Discussion ......................... 39 Figures .............................................. 46 References ............................................. 67 Contents of Figures Figure 1. Flow cytometric analysis of mesenchymal stem cells (MSCs) surface markers. ............................................................. 47 Figure 2. Differentiation ability of mesenchymal stem cells (MSCs). .......................... 48 Figure 3. Mesenchymal stem cells (MSCs) inhibited CD3/28-induced T lymphocytes proliferation in a dose-dependent manner. ............................................ 49 Figure 4. Mesenchymal stem cells (MSCs) suppressed CD3/28-induced CD4+ T lymphocytes division.................................................... 50 Figure 5. Mesenchymal stem cells (MSCs) secreted IL-1ra.......................................... 51 Figure 6. The experimental design of immunization and intravenously injection of mesenchymal stem cells (MSCs) treatment in CIA model.................... 52 Figure7. Endpoint measurement in this study. .................................... 53 Figure8. Treatment of mesenchymal stem cells (MSCs) did not influence the incidence of arthritis. .................................................................... 54 Figure9. Administration of mesenchymal stem cells (MSCs) decreased clinical score of collagen-induced arthritis (CIA). .................................................. 55 Figure10. Mesenchymal stem cells (MSCs) decreased the swelling of hind paw........ 56 Figure 11. The level of type II collagen-specific antibodies was not affected by mesenchymal stem cells (MSCs) treatment........................................ 57 Figure 12. Mesenchymal stem cells (MSCs) delivery did not affect splenic lymphocytes proliferation. ................................... 58 Figure 13. Mesenchymal stem cells (MSCs) affected cytokine productions of splenic lymphocytes....................................... 59 Figure 14. Mesenchymal stem cells (MSCs) did not affect sera cytokine levels. ......... 61 Figure 15. Cytokines profile of knee protein extractions. ............ .... .... .... .... ........ 62 Figure 16. Histological images of paw stained with H&E. .......................................... 64 | |
| dc.language.iso | en | |
| dc.subject | 類風濕性關節炎 | zh_TW |
| dc.subject | 間葉幹細胞 | zh_TW |
| dc.subject | Mesenchymal stem cell | en |
| dc.subject | Rheumatoid arthritis | en |
| dc.title | 間葉幹細胞應用在類風濕性關節炎動物模式發炎改善之探討 | zh_TW |
| dc.title | Study on the Anti-inflammatory Effect of Mesenchymal Stem Cells in Murine Model of Collagen-Induced Arthritis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 周秀慧,孫昭玲 | |
| dc.subject.keyword | 間葉幹細胞,類風濕性關節炎, | zh_TW |
| dc.subject.keyword | Mesenchymal stem cell,Rheumatoid arthritis, | en |
| dc.relation.page | 74 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-07-25 | |
| dc.contributor.author-college | 牙醫專業學院 | zh_TW |
| dc.contributor.author-dept | 口腔生物科學研究所 | zh_TW |
| 顯示於系所單位: | 口腔生物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 108.85 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
