Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65396
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor胡崇德
dc.contributor.authorMei-Hua Chenen
dc.contributor.author陳玫樺zh_TW
dc.date.accessioned2021-06-16T23:40:31Z-
dc.date.available2012-08-01
dc.date.copyright2012-08-01
dc.date.issued2012
dc.date.submitted2012-07-25
dc.identifier.citation[1] D. Khomskii, Physics 2, 20(2009).
[2] Y. Tokura, J. Magnetism and magnetic materials, 310, 1145 (2007).
[3] L. D. Landau and E. M. Lifshitz, Electrodynamics of continuous media (Fizmatgiz,Moscow, 1959)
[4] J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig and R. Ramesh, Science 299, 1719 (2003).
[5] T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, Nature 426, 55 (2003).
[6] N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha, and S-W. Cheong, Nature 429, 392 (2004).
[7] K. F. Wang, J. M. Liu and Z. F. Ren, Adv. Phys. 58, 321 (2009).
[8] Y. Tokura and S. Seki, Adv. Mater., 22, 1554 (2009).
[9] Y. Tokura, Science 312, 1481 (2006).
[10] H. Katsura, N. Nagaosa and A. V. Balatsky, Phys. Rev. Lett. 95, 057205 (2005).
[11] C. D. Hu, Phys. Rev. B 81, 224414 (2010).
[12] Akio Yoshimori, J. Phys. Soc. Jpn. 14 807 (1959).
[13] T. Nagamiya, K. Nagata and Y. Kitano, Prog. Theo. Phys. 27, 1253 (1962).
[14] T. Nagamiya, J. de Phys. Rad. 20, 70 (1959).
[15] M. Kenzelmann, A. B. Harris, S. Jonas, C. Broholm, J. Schefer, S. B. Kim, C. L.Zhang, S.-W. Cheong, O. P. Vajk, and J. W. Lynn, Phys. Rev. Lett. 95, 087206(2005).
[16] Y. J. Choi, H. T. Yi, S. Lee, Q. Huan, V. Kiryukhin and S-W. Cheong, Phys. Rev. Lett. 100, 047601(2008). and S. Park, Y. J. Choi, C. L. Zhang and S-W. Cheong, Phys. Rev. Lett. 98, 057601(2008).
[17] T. Kimura, Y. Seiko, H. Nakamura, T. Siegrist and A. P. Ramirez, Nat. Mat. 7, 291-294.
[18] Masuda, A. Zheludev, A. Bush,M. Markina, and A. Vasiliev, Phys. Rev. Lett. 92, 177201 (2004).
[19] A. Rusydi, I. Mahns, S. Muller, M. Rubhausen, S. Park, Y. J. Choi, C. L. Zhang, S.-W. Cheong, S. Smadici, P. Abbamonte, M. v. Zimmermann and G.A. Sawatzky, Appl. Phys. Lett. 92, 262506 (2008).
[20] Yoshiaki Kobayashi, Kenji Sato, Yukio Yasui, Taketo Moyoshi, Masatoshi Sato and Kazuhisa Kakurai, J. Phys. Soc. Jpn. 78, 084721 (2009).
[21] L. Capogna, M. Reehuis, A. Maljuk, R. K. Kremer, B. Ouladdiaf,M. Jansen, and B. Keimer, Phys. Rev. B 82, 014407 (2010).
[22] W. Geertsma and D. Khomskii, Phys. Rev. B 54, 3011 (1996).
[23] S. Seki, Y. Onose and Y. Tokura, Phys. Rev. Lett. 101, 067204 (2008).
[24] Giuseppe Grosso and Giuseppe Pastori Parravicini, “Solid state physics”.
[25] P.W. Anderson, Phys. Rev. 115, 2–13 (1959), and Phys. Rev. 79, 350–356 (1950).
[26] Junjiro Kanamori, J. Phys. Chem. Solids 10, 87 (1959).
[27] V. Yu. Yushankhai and R. Hayn, Europhys. Lett. 47, 116–121(1999).
[28] “Quantum Magnetism”, Lect. Notes Phys. 645, edited by U. Schollw‥ock, J. Richter, D.J.J. Farnell, R.F. Bishop, Springer, Berlin Heidelberg (2004).
[29] Sadamichi Maekawa, et al., “Physics Of Transition Metal Oxides”, vol 20, p 305, academic press, Springer (2004).
[30] J. J. Sakurai, “Modern quantum mechanics”.
[31] Herbert Goldstein, Charles P. Poole, and John L. Safko.
[32] T. Moriya, Phys. Rev. 120, 91 (1960).
[33] I. Dzyaloshinskii, J. Phys. Chem. Solids 4, 241 (1958).
[34] Y. Onose, T. Ideue, H. Katsura, Y. Shiomi, N. Nagaosa and Y. Tokura, Science 329, 297 (2010).
[35] O. A. Tretiakov and A. Abanov, Phys. Rev. Lett. 105, 157201 (2010).
[36] I. G. Bostrem, Jun-ichiro Kishine and A. S. Ovchinnikov, Phys. Rev. B 78, 064425 (2008).
[37] E. Ising, Z. Physik 31, 253 (1925).
[38] H. Bethe, Zeitschrift fu”r Physik A, Vol.71, pp. 205-226 (1931).
[39] A, Kl‥umper, A. Schadschneider, and J. Zittartz, J. Phys. A: Math. Gen. 24 L955. and Europhys. Lett. 24, 293.
[40] K. Totsuka and M. Suzuki, J. Phys. C 7, 1639–1662 (1995).
[41] A. K. Kolezhuk, H. J. Mikeska, Phys. Rev. B 56, 11380 (1994).
[42] Gang Su, Phys. Lett. A 213, 93–101 (1996).
[43] I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, Phys. Rev. Lett. 59, 799 (1987).
[44] T. Barnes, E. Dagotto, J. Riera, and E. S. Swanson, Phys. Rev. B 47, 3196 (1993).
[45] C. K. Majumdar, D. k. Ghosh, J. Math. Phys. 10, 1388 and 1399(1969).
[46] T. Hanada, J. Kane, S. Nakagawa and Y. Natsume, J. Phys. Soc. Japan 57, 1891 (1988) and 58, 3869 (1989).
[47] R. Bursill, G. A. Gehring, D. J. J. Farnell, J. B. Parkinson, Tao Xiang and Chen Zeng, J. Phys.: Cond. Matt. 7, 8605 (1995).
[48] Steve R. White, Phys. Rev. B 54, 9862–9869 (2008).
[49] T. Hikihara, M. Kaburagi, and H. Kawamura, Can. J. Phys. 79 1587 (2001), and Phys. Rev. B 63, 174430 (2001).
[50] I. P. McCulloch, R. Kube, M. Kurz, A. Kleine, U. Schollwock, and A. K. Kolezhuk, Phys. Rev. B 77, 094404 (2008).
[51] K. Ojunishi, J. Phys. Soc. Jpn. 77, 114004 (2008).
[52] D. Allen and D. S’en’echal, Phys. Rev. B 51, 6394–6401 (1995).
[53] S. Rao and D. Sen, J. Phys.: Condens. Matter 9, 1831 (1997).
[54] S. Sarkar and D. Sen, Phys. Rev. B 65, 172408 (2002).
[55] H. Eisaki, N. Motoyama, and S. Uchida, Physica C 282-287, 1323 (1997).
[56] Y. Mizuno, T. Tohyama and S. Mackawa, Phys. Rev. B 57, 5326–5335 (1998).
[57] V. V. Mazurenko, S. L. Skornyakov, A. V. Kozhevnikov, F. Mila, and V. I. Anisimov, Phys. Rev. B 75, 224408 (2007).
[58] Li Zhao, Kuo-Wei Yeh, Sistla Muralidhara Rao, Tzu-Wen Huang, Phillip Wu, Wei-Hsiang Chao, Chung-Ting Ke, Cheng-En Wu and Maw-Kuen Wu, EPL 97, 37004 (2012).
[59] J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954).
[60] C. D. Batista, Phys. Rev. B 80, 180406 (2009).
[61] A. A. Gippius, E. N. Morozova, A. S. Moskvin, A. V. Zalessky, A. A. Bush, M. Baenitz, H. Rosner and S.-L. Drechsler, Phys. Rev. B. 70, 020406 (R) (2004).
[62] E. Plekhanov, A. Avella and F. Mancini, Eur. Phys. J. B - Cond. Mat. 77, 381(2010).
[63] D. V. Dmitriev and V. Ya. Krivnov, Phys. Rev. B 75, 014424 (2007), and Phys. Rev. B 77, 024401 (2008).
[64] T. Nagamiya, “Solid state physics”, vol 20, p 305 , academic press, seitz (1971).
[65] T. Masuda., et. al., Phys. Rev. B 72 014405 (2005).
[66] L. I. Glazman and A. I. Larkin, Phys. Rev. Lett 79, 3736 (1997).
[67] L. E. Svistov, L. A. Prozorova, A. M. Farutin, A. A. Gippius, K. S. Okhotnikov, A. A. Bush, K. E. Kamentsev and E. A. Tishchenko, J. Exp. Theor. Phys. 135, no. 6, pp 1151-1161 (2009), and L E Svistov, L A Prozorova, A A Bush and K EKamentsev, J. Phys.: Conf. Series 200, 022062 (2010).
[68] A. M. Vorotynov, A. I. Pankrats, G. A. Petrakovskii, K. A. Sablina, W. Paszkowicz, and H. Szymczak, J. Exp. Theor. Phys. 86 1020(1998), and A. M. Vorotinova, A. I. Pankratsa, G. A. Petrakovskiia, O.V. Vorotinovaa, and H. Szymczakb, J. Mag. Mag. 188 233-236 (1998).
[69] T. Kashiwagi, S. Kimura, A. Bush, A. Vasiliev, A. Zheludev, K. Kindo, and M. Hagiwara, J. Phys.: Conf. Ser. 51, 71 (2005).
[70] A. A. Bush, V. N. Glazkov, M. Hagiwara, T. Kashiwagi, S. Kimura, K. Omura, L. A. Prozorova, L. E. Svistov, A. M. Vasiliev and A. Zheludev, Phys. Rev. B 85, 054421 (2012).
[71] Rajendra Bhatia , “Positive definite matrices”. (2007)
[72] M. Karbach and G. Muller, Computers in Physics 11 (1997), 36-43, Computers in Physics 12 (1998), 565-573, and cond-mat/ 0008018.
[73] Meihua Chen, Sujit Sarkar and C. D. Hu, Physica B 406 2211 (2011)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65396-
dc.description.abstractMultiferroic LiCu2O2 is an interesting material. When we apply magnetic field, its polarization changes. In type II multiferroic material, it has a spiral spin state as the ground state. These spiral states can be found in many complex transition metal compounds, where competing exchange interactions of the neighboring spins can cause such periodically modulated spin state. The system with competing exchange interactions can be modeled by zigzag spin chain. Therefore, here we consider the zigzag spin chain system with competing nearest and next nearest superexchange interactions. Most importantly, we also considered anisotropic exchange interaction and Dzyaloshinskii-Moriya(DM) interaction. In this thesis, we divide our work into two part; the first part is to model the system and the second part is to analyze the ESR data.
In the first part, we had planed two work. The first one is to find the quantum critical surface of the XXZ zigzag spin chain, and the second one is to find the spiral spin state as the ground state in a zigzag spin chain system. In the first work, we analyze the ground state of a zigzag spin chain with applied magnetic field. Starting from a local Hamiltonian Hi,i+1,i+2 for the i−th, i+1−th, i+2−th spins, a parameter x is introduced to give the applied magnetic field on respective spins as B/(2 + x), xB/(2 + x) and B/(2 + x). We are able to identify the ground state as the fully polarized state and one-magnon states in the region b = (4 + f)^2/8 where b = B/J2, f = J1/J2; J1 and J2 are the nearest neighbor and next nearest neighbor exchange interaction, respectively. With the theorem of positive semi-definite matrix, we showed that b = (4 + f)^2/8 is a quantum critical line for f ≥ 0. For f < 0, we are able to show with the Bethe ansatz that the fully polarized state and one-magnon states have energy lower than those states with |S| ≥ N/6 for b ≥ (4 + f)^2/8. Hence, the line b = (4 + f)^2/8 is likely a quantum critical line for both positive and negative J1. We can generalize our result to xxz zigzag spin chains. In the second work, we intend to identify the conditions for spiral spin state as the ground state in this spin chain system. We start from building the connection between the spiral state and the fully polarized (FP) state with a unitary transform. Under this transformation, anisotropic exchange interaction and the Dzyaloshinskii-Moriya (DM) interaction can be transformed to each other. Then we use positive semi-definite theorem to identify the region of FP state being the GS for the transformed Hamiltonian, and it is the region of spiral spin state as GS of the original Hamiltonian. We showed that, to have the spiral GS, the effect of DM interaction is important, and its strength is related to the pitch angle of spiral spins. Our system indicates the connection between spiral spins and magnetic frustration, which is a feature of the multiferroics. This method not only can be applied to spin-1/2 system, but also to any other spin systems.
In the second part of our work, we intend to explain the electron spin resonance (ESR) of LiCu2O2. Based on the icture of classical spins and the spin wave theory, we calculate the low lying excitations. Our result shows that the resonance ν1 ∼ 30GHz corresponds to the spin wave state of wave vector q = Q (where Q = (0.5, 0.174, 0) is the wave vector of spiral spins). The mechanism for the spin gap and hence, the resonance can be either the DM interaction or an anisotropic superexchange interaction. Thus, when the applied magnetic field is parallel to the spiral axis (R), there are two branches; when it is perpendicular to the spiral axis, there is only one branch. By comparing the result of our theoretical calculation with that of experiment, we discuss the system properties, such as anisotropy and DM interaction. We also predict that the spiral axis will lies on a-b plane, and close to a +b, which is determined by the direction of the DM interaction. As a result of this work, we revealed the condition for spiral spin state to be the ground state in the zigzag spin chain, in which the DM interaction is very important. Furthermore, we understand the origin of ν1 in LiCu2O2 is from spin wave with wave vector q = Q. Then we obtain the system parameter, such as J, delta, D , spiral axis R and predict how the spiral ground state changes under applied magnetic field.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:40:31Z (GMT). No. of bitstreams: 1
ntu-101-D96222011-1.pdf: 5047210 bytes, checksum: b735248eb444cf5b427831b7eccefe6c (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員會審定書. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
誌謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
List of Figures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv
List of Tables. . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi
1 Introduction. . . . . . . . . . . . . . . . . . . . . .. . . . . . .. . . . . . .. .. 1
1.1 Introduction to multiferroics . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Spiral spin state in multiferroics . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Spiral spin state in multiferroics . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 The origin of the spin interaction . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.1 Direct exchange and superexchange interaction . . . . . . . . . . . . . . . . . 6
1.3.2 Dzyaloshinskii-Moriya interaction . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.3 The zigzag spin chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.4 The important property of LiCu2O2 . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.4.1 The multiferroic property of LiCu2O2 . . . . . . . . . . . . . . . . . . . . . 19
1.4.2 The spin interaction in LiCu2O2 . . . . . . . . . . . . . . . . . . . . . . . . 24
I MODELING THE SYSTEM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2 Quantum critical surface of the XXZ zigzag spin chain with applied magnetic field . . 31
2.1 Quantum critical surface of the zigzag spin chain . . . . . . . . . . . . . . . . . 33
2.1.1 The quantum critical surface from local Hamiltonian . . . . . . . . . . . . . . . 35
2.1.2 Proof of the quantum critical surface by positive semi-definite matrix theorem . 37
2.1.3 Case outside the region of inequalities (2.18-2.19) . . . . . . . . . . . . . . . 39
2.2 The matrix product representation of the ground state . . . . . . . . . . . . . . . 45
3 The spiral spin state in a zigzag spin chain system. . . . . . . . . . . . . . . . . 53
3.1 Spiral spin state as an eigen state . . . . . . . . . . . . . .. . . . . . . . . . 54
3.2 Spiral state as the ground state . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.2.1 Isotropic exchange interaction . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.2.2 Without DM interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.2.3 Special case with φ′ = 50^0 . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.3 Symmetry properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.4 Extension of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.4.1 Coupled spin-1/2 zigzag spin system . . . . . . . . . . . . .. . . . . . . . . . 68
3.4.2 Two dimensional triangular spin-1/2 spin system with spiral state . . . . . . . . 74
3.5 Analysis and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
II LOOKING INTO THE EXPERIMENT. . . . . . . . . .. . . . . . . . . . . . . .. . . . . . 83
4 Analysis of the electron spin resonance of LiCu2O2 at low temperature . . . . . . . . 85
4.1 Experimental results of ESR in LiCu2O2 . . . . . . . . . . . . . . . . . . . . . . 86
4.2 Starting point of the spin wave theory . . . . . . . . . . . . . . . . . . . . . . 89
4.2.1 ESR resonance and relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.2.2 Physical picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.2.3 Classical ground state without applied magnetic field . . . . . . . . . . . . . 92
4.2.4 Classical ground state with applied magnetic field . . . . . . . . . . . . . . . 96
4.3 The model of spin wave excitation in LiCu2O2 . . . . . . . . . . . . . . . . . . . 97
4.3.1 Two branches case for the field applied on b axis . . . . . . . . . . . . . . . . 97
4.3.2 One branch case for h//c . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.4 Physical starting point for fitting . . . . . . . . . . . . . . . . . . . . . . . 104
4.4.1 Fitting equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.4.2 Comparison of the result of fitting with experiment data . . . . . . . . . . . . 108
4.5 What can we see from analyzing delta h/ν? . . . . . . . . . . . . . . . . . . . . 111
5 Numerical analysis of the spin state, polarization and magnetization of LiCu2O2. . . 115
5.1 The response of the spiral axis to applied magnetic field . . . . . . . . . . . . 116
5.2 The case of D lying on the a-b plane make angle 45^0 with b-axis . . . . . . . . . 121
5.2.1 The spiral spin state change when the applied magnetic field is on the b-c plane 121
5.2.2 The state change when applied magnetic field lies on a-b plane. . . . . . . . . 125
5.2.3 The state change when the applied magnetic field lies on a-c plane . . . . . . . 128
5.3 Polarization P, Magnetization M and P × M . . . . . . . . . . . . . . . . . . . . 131
5.4 The chirality along a, b, and c-axis . . . . . . . . . . . . . . . . . . . . . . . 135
5.5 Summary of part II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
III CONCLUSIONS. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . 139
Appendix. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 143
A Selected list of symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
B The important energy scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
C Introduction to the positive semi-definite theory. . . . . . . . . . . . . . . . . . 147
D Introduction of the Bethe ansatz . . . . . . . . . . . . . . . . . . . . . . . . . . 151
E Detailed derivation in Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . 155
E.1 Energy of the classical ground state . . . . . . . . . . . . . . . . . . . . . . . 156
E.2 Two branch case for the applied field on the b- c plane . . . . . . . . . . . . . 157
E.3 One branch case for h//c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
E.4 Definition of X_{q,r}, Y_{q,r}... . . . . . . . . . . . . . . . . . . . . . . . . 165
E.5 Formula to be use for Fourier transformation . . . . . . . . . . . . . . . . . . . 167
F The polarization change with applied different γ_h in Chapter 5 . . . . . . . . . . 168
F.1 The applied field on b-c plane . . . . . . . . . . . . . . . .. . . . . . . . . . 171
F.2 The field applied on the a-b plane . . . . . . . . . . . . . . . . . . . . . . . . 174
F.3 The field applied on the a-c plane . . . . . . . . . . . . . . . . . . . . . . . . 175
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
dc.language.isoen
dc.subjectDzyaloshinskii-Moriya interactionzh_TW
dc.subjectZigzag 自旋鍊zh_TW
dc.subject電子自旋共振zh_TW
dc.subject鐵材料zh_TW
dc.subject螺旋自旋態zh_TW
dc.subject自旋波理論zh_TW
dc.subjectLiCu2O2zh_TW
dc.subjectpositive semi-definite theoremzh_TW
dc.subjectpositive semi-definite theoremen
dc.subjectspiral spin stateen
dc.subjectzigzag spin chainen
dc.subjectelectron spin resonanceen
dc.subjectspin wave theoryen
dc.subjectLiCu2O2en
dc.subjectmultiferroic materialen
dc.subjectDzyaloshinskii-Moriya interactionen
dc.titleZ型自旋鍊的物理特性研究-量子相變面、螺旋自旋態及多鐵材料zh_TW
dc.titlePhysical property of the zigzag spin chain: quantum critical surface, spiral spin state, and multiferroicsen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree博士
dc.contributor.oralexamcommittee林昭吟,黃迪靖,郭光宇,吳文欽,張明哲
dc.subject.keyword鐵材料,螺旋自旋態,Zigzag 自旋鍊,電子自旋共振,自旋波理論,LiCu2O2,positive semi-definite theorem,Dzyaloshinskii-Moriya interaction,zh_TW
dc.subject.keywordmultiferroic material,spiral spin state,zigzag spin chain,electron spin resonance,spin wave theory,LiCu2O2,positive semi-definite theorem,Dzyaloshinskii-Moriya interaction,en
dc.relation.page182
dc.rights.note有償授權
dc.date.accepted2012-07-25
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
4.93 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved