請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65375完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張祖亮(Tsu-Liang Chang) | |
| dc.contributor.author | Chih-Haou Chin | en |
| dc.contributor.author | 金志豪 | zh_TW |
| dc.date.accessioned | 2021-06-16T23:39:24Z | - |
| dc.date.available | 2014-08-01 | |
| dc.date.copyright | 2012-08-01 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-07-25 | |
| dc.identifier.citation | 1. 柯清水. 1994. 水草栽培指南. 沈氏藝術印刷股份有限公司. 台北.
2. 高木隆司、林國鄉 (譯) . 1987. 形的奧秘. 牛頓出版社. 台北. 3. 富澤直人、蔡孟峰. 2006.全新水草600種圖鑑. 展新文化事業股份有限公司. 台北. 4. 黃朝慶. 2002. 植物異型葉的發生與適應. 自然保育季刊 39:34. 5. 陽遠波. 1972. 台灣產水生單子葉植物之分類研究. 國立台灣大學碩士論文. 6. 廖家蔚. 2007. 影響異葉水蓑衣生長及其異型葉產生之環境因子探討.國立彰化師範大學碩士論文. 7. Bodkin, P.C., D.H.N. Spence, and D.C. Weeks. 1980. Photoreversible control of heterophylly in Hippuris vulgaris L. New Phytologist 84:533-542. 8. Briggs, D. and Walters, S.M. 1984. Plant variation and evolution. Cambridge University Press. Cambridge. pp. 107-114. 9. Bruni, N.C., J.P. Young, and N.G. Dengler. 1996. Leaf developmental plasticity of Ranunculus flabellaris in response to terrestrial and submerged environment. Canadian J. Bot. 74:823-827. 10. De Jong, G. 1995. Phenotypic plasticity as a product of selection in a variable environment. Amer. Naturalist 145:493-512. 11. Deschamp, P.A. and T.J. Cooke. 1983. Leaf dimorphism in aquatic angiosperms: significance of turgor pressure and cell expansion. Science 505-507. 12. Deschamp, P.A. and T.J. Cooke. 1984. Causal mechanisms of leaf dimorphism in the aquatic Callitriche heterophylla. Amer. J. Bot. 71:319-329. 13. Goliber, T.E. and L.J. Feldman. 1990. Developmental analysis of leaf plasticity in the heterophyllous aquatic plant Hippuris vulgaris. Amer. J. Bot. 77:399-412. 14. Kuwabara, A., K. Ikegami, T. Koshiba and T. Nagata. 2003. Effects of ethylene and abscisic acid upon heterophylly in Ludwigia arcuata (Onagraceae). Planta 217: 880-887. 15. Lin, B.L. 1984. Abscisic acid induces land form characteristics in Marsilea quadrifolia. Amer. J. Bot. 71: 638-644. 16. Lin, B.L. and W.J. Yang. 1999. Blue light and abscisic acid independently induce heterophyllous switch in Marsilea quadrifolia. Plant Physiol. 119:429-434. 17. Lindenmayer, A. 1968. Mathematical models for cellular interactions in development. J. Theoret. Biol. 18:280-299. 18. Maberly, S.C. and T.V. Madsen. 2002. Freshwater angiosperm carbon concentration mechanisms: processes and patterns. Funct. Plant Biol. 29:393-405. 19. Mccallum, W.B. 1902. On the nature of the stimulus causing the change of form and structure in Proserpinaca palustris. Bot. Gaz. 34:93-108. 20. Mccallum, W.B. and H.M. Dale. 1961. Heterophylly in Hippuris, a problem in identification. Canadian J. Bot. 39:1099-1116. 21. Momokawa, N., Y. Kadono and H. Kudoh. 2011. Effects of light quality on leaf morphogenesis of a heterophyllous amphibious plant, Rotala hippuris. Ann. Bot. 108:1299-1306. 22. Nielsen, S.L., E. Gacia, and K. Sand-Jensen. 1991. Land plant of amphibious Littorella uniflora (L.) Aschers. Maintain utilization of CO2 from the sediment. Oecologia 88:258-262. 23. Prusinkiewicz, P. and A. Lindenmayer. 1990. The algorithmic beauty of plants. Springer-Verlag. New York. 24. Robe, W.E. and H. Griffiths. 2000. Physiological and photosynthetic plasticity in the amphibious, freshwater plant, Littorella uniflora, during the transition from aquatic to dry terrestrial environments. Plant, Cell and Environ. 23:287-302. 25. Sand-Jensen, K. and C. Prahl. 1982. Oxygen exchange with the lacunae and across leaves and roots of the submerged vascular macrophyte Lobelia dortmanna L. New Phytol. 91:103-120. 26. Sato, M., M. Tsutsumi, A. Ohtsubo, K. Nishii, A. Kuwabara and T. Nagata. 2008. Temperature-dependent changes of cell shape during heterophyllous leaf formation in Ludwigia arcuata (Onagraceae). Planta 228:27-36. 27. Scheiner, S.M. 1993. Genetics and evolution of phenotypic plasticity. Ann. Rev. Eco. Systemat. 24:35-68. 28. Schlichting, C.D. and Levin, D.A. 1986. Phenotypic plasticity: an evolving plant character. Biol. J. Linn. Soc. 29:37-47. 29. Schlichting, C. D. and Pigliucci, M. 1993. Evolution of phenotypic plasticity via regulatory genes. Amer. Naturalist 142:366-370. 30. Schmidt, B.L. and W.F. Millington. 1968. Regulation of leaf shape in Proserpinaca palustris. Bulletin of the Torrey Botanical Club 95:264-286. 31. Sculthorpe, C.D. 1967. The biology of aquatic vascular plants. Edward Srnold Ltd. London. 32. Smith, A.R. 1984. Plants, fractals, and formal languages. ACM SIGGRAPH Computer Graphics 18:1-10. 33. Smith, H. 1982. Light quality, photoreception, and plant strategy. Annual Review of Plant Physiol. 33:481-518. 34. Sondergaard, M. 1979. Light and dark respiration and the effect of the lacunal system on refixation of CO2 in submerged aquatic plants. Aquat. Bot. 6:269-283. 35. Wells, C.L. and M. Pigliucci. 2000. Adaptive phenotypic plasticity: the case of heterophylly in aquatic plants. Perspectives in Plant Ecology, Evolution and systematic 3:1-18. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65375 | - |
| dc.description.abstract | 有些水生植物在挺水及沉水時會產生不同形狀之葉片,稱為異形葉。與幼年葉、成熟葉不同的是水生植物之異形葉是因環境改變而導致葉形產生變化而非株齡因素,目的是為了適應空氣及水中兩種差異甚大的環境。在水中其氣體交換比空氣中較難進行,所以需要特化的葉片幫助植物生存在水中。前人研究發現某些特定因素會使水生植物產生異形葉,如乙烯、藍光 、ABA等,但影響因子與水生植物異形葉之間存在著劑量關係,而每種植物的劑量關係也不完全相同。有些植物在水中的異形葉較挺水葉細長,如紅宮庭。有些沉水葉缺刻深達主脈,挺水葉葉緣卻呈鋸齒狀,如紅雨傘。有些甚至連葉序也不相同,如大寶塔。在不同光強度及光週期,植物之生長速度因種類而有差異,可能是因原棲地環境不同導致,使水生植物對水族箱中的環境有不同的適應力。利用L-system模擬水生植物在水族箱環境中的生長情形,將植株之生長狀況分類,可利用於預測水族造景生長情形之上。L-system為一種以數學規則描述生物生長情形的理論,以起始字串及疊代重寫規則並以烏龜爬行軌跡來描述生物形態及生長過程。由於近年來分子生物學之進步,學者對遺傳及發生 (從受精卵到成長為個體的過程) 已有相當程度的瞭解,更有許多物種之遺傳基因已被解序。各種生物之間其遺傳基因各不相同,但生物之生長過程就是以這些遺傳訊息表達出的各種需要的蛋白或分化各個細胞 (依生物部位之不同而有不同分化結果) 。本研究提出以L-system的觀點模擬生物,其器官生長在同一種植物基本構形為相似的,只是因環境改變造成L-system參數改變以致最終外形不相同。如能找出DNA序列與L-system中參數改變的關係,甚至知曉L-system之基本構形,將能以各種DNA序列模擬出各個物種的外表形態。 | zh_TW |
| dc.description.abstract | Heterophylly observed in some aquatic plants which have different shapes of leaves while emerged or submerged. The shapes of the heterophyll of aquatic plants change when they encounter different environments but not age of plants. The purpose of aquatic plants heterophylly is to adapt the environments from air to water and the opposite direction. The exchange of gas is harder in water than in air, so plants need special leaves to survive in water. Some researches show that there are some factors leading the aquatic plants to form the heterophyll, including ethylene, blue light and ABA. The factors have different dosage relationships with heterophyll in different species. The heterophyll of submerged is thinner than emerged in some aquatic plants, Rotala rotundifolia for example. The notch of submerged heterophyll is deeper than emerged one, Proserpinaca palustris for example. Some heterophylly even changes the phyllotaxy, such as Limnophila aquatic. The reason that the plants have different growth rates in different light density and photoperiodism is because their original nature habitats are different. And the reason can lead aquatic plants to have different adaptability in aquarium. We can use L-system to simulate the growth situations of aquatic plants in aquarium, and it can also predict the view of aquarium. L-system is a theory about describing the growth situations of organism by mathematic, including axioms, rewriting rules, turtle graphics. Due to the progress of molecular biology, we have known a lot of DNA sequences of organism. The DNA between different organisms are different, it produces different genetics messages, and shapes the organism. From the view point of L-system, we propose that the basic form of plant organ is similar, and the different appearances are due to the parameters’ changes in different environment. If we can find the relationship between DNA sequences and the parameters of L-system, as well as the basic form of organism by L-system. We can simulate the shapes of organism by DNA sequences. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T23:39:24Z (GMT). No. of bitstreams: 1 ntu-101-R99628140-1.pdf: 23313527 bytes, checksum: ba6218e1695cb60134969f961019daa8 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 摘要.....................................................I
一、前言.................................................1 二、前人研究.............................................5 (一)L-system 理論基礎....................................5 (二)以L-system描述葉形...................................6 (三)兩棲植物異形葉概說...................................7 (四)影響水生植物異形葉產生之因素.........................8 (五)不同形態異形葉之水生植物葉形介紹....................10 (六)試驗材料植物介紹....................................11 (七)L-system與生物外形之結合............................12 三、材料與方法..........................................14 (一)試驗材料來源........................................14 (二)光強度與光週期對紅宮庭、綠松尾、粉紅虎耳株高的影響..14 (三)藍光對紅宮庭異形葉生成之影響........................15 (四)紅宮庭、大寶塔、紅雨傘的沉水型態至挺水型態的轉變....15 (五)紅宮庭挺水型態至沉水型態的轉變......................15 (六)模擬平台............................................16 (七)統計分析............................................19 四、結果與討論..........................................20 (一)紅宮庭、綠松尾、粉紅虎耳在不同光強度及不同光週期之生長狀況與模擬................................................20 (二)模擬紅宮庭在藍光下生長之情形........................22 (三)模擬紅宮庭、大寶塔、紅雨傘從沉水型態轉為挺水型態之葉形轉變......................................................23 (四)模擬紅宮庭挺水型態至沉水型態的轉變..................25 (五)異形葉成因與L-system間之關係........................26 五、結論................................................82 參考文獻................................................84 | |
| dc.language.iso | zh-TW | |
| dc.subject | L系統 | zh_TW |
| dc.subject | 異形葉 | zh_TW |
| dc.subject | 兩棲植物 | zh_TW |
| dc.subject | heterophylly | en |
| dc.subject | amphibious plants | en |
| dc.subject | L-system | en |
| dc.title | 以L-system探討三種水生植物異形葉之形態發生 | zh_TW |
| dc.title | L-system Modeling in Searching Heterophylly Morphogenesis of Three Aquatic Plants | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王自存,陳開憲 | |
| dc.subject.keyword | L系統,異形葉,兩棲植物, | zh_TW |
| dc.subject.keyword | L-system,heterophylly,amphibious plants, | en |
| dc.relation.page | 86 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-07-25 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 園藝學研究所 | zh_TW |
| 顯示於系所單位: | 園藝暨景觀學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 22.77 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
