請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65341完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 范正成(Jen-Chen Fan) | |
| dc.contributor.author | Chen-Yeh Ni | en |
| dc.contributor.author | 倪貞業 | zh_TW |
| dc.date.accessioned | 2021-06-16T23:37:29Z | - |
| dc.date.available | 2021-12-31 | |
| dc.date.copyright | 2012-07-27 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-07-26 | |
| dc.identifier.citation | 1. 伍婉貞,台北市區自然降雨動能及其降雨強度之關係,國立台灣大學農業工程所碩士論文,1991。
2. 呂季蓉,台灣南部地區長期乾旱趨勢分析之研究,國立成功大學水利及海洋工程研究所碩士論文,2006。 3. 李光敦,水文學,2005,p 245-331。 4. 吳上智(1997),台灣中北部與美國地區雨滴粒徑分佈及沖蝕性之研究,國立中興大學土木工程研究所碩士論文。 5. 吳志剛、楊道昌、游保杉(2002),氣候變遷對高屏溪流域水資源衝擊探討,第十一屆水利工程研討會,p81-83,台北市。 6. 吳明進(2001),台灣環境變遷與全球氣候變遷衝擊之評析-子計畫-台灣環境變遷與全球氣候變遷衝擊之評估-氣候變遷(三)-PartⅡ-水資源國科會專題報告研究計畫成果報告,NSC-89-2621-Z-002-037。 7. 吳嘉俊、王阿碧(1996),屏東老埤地區雨滴粒徑與降雨動能之研究,中華水土保持學報27(2):151-165。 8. 吳藝昀(2004),台灣地區降雨沖蝕指數之修訂,國立中興大學土木工程研究所碩士論文。 9. 何宜昕,建立氣候變遷對石門水庫供水與防洪能力之影響評估方法,國立台灣大學生物環境系統工程研究所碩士論文,2010。 10. 何宜昕、童慶斌,歷史氣候變異點分析,氣候變遷與環境生態講義,台灣大學生物環境系統工程學系,2011。 11. 林俐玲、陳品岡,修正版通用土壤流失公式(RUSLE)之簡介,水保技術,2010,5(4): p. 251-257。 12. 柳中明, [發展本土性變遷趨勢,衝擊評估與因應策略之整合模式發展] 與 [長期基礎資料調查,監測與收集整合機制] 之推動規劃,2002。 13. 范正成,台灣地區土壤沖蝕預測公式之回顧,研究與展望,中華水土保持學報, 1993。 14. 范正成、楊智翔、劉哲欣,台北地區降雨沖蝕指數推估公式之建立及歷年變化趨勢分析,中華水土保持學報,2009. 40(2): p. 113-121。 15. 范正成等,台北地區自然降雨動能及降雨強度之關係,行政院國家科學委員會專題硏究計畫成果報告,1991。 16. 范正成、賴仲智(1992),最大三十分鐘降雨強度之評估法,台灣水利,40(1):30-44。 17. 范正成、盧光輝(1993),台北地區最大三十分鐘降雨強度與平均降雨強度之關係-量測及分析,國科會專題研究計畫報告,NSC-81-0410-E-002-20。 18. 徐宏瑋,降雨量變遷趨勢檢定與分析,國立台灣大學生物環境系統工程研究所碩士論文,2004。 19. 馬明明(1995),台灣中部與台北地區降雨特性及沖蝕性關係之研究,國立中興大學土木工程研究所碩士論文。 20. 俞俊賓,曾文水庫集水區年降雨沖蝕指數與年降雨量關係之研究,國立成功大學水利及海洋工程研究所碩士論文,2008。 21. 陳威翰(2002),台灣東部地區雨滴粒徑分佈及其沖蝕性研究,國立中興大學土木工程研究所碩士論文。 22. 黃俊德(1979),台灣降雨沖蝕指數之研究,中華水土保持學報,10(1):127-144。 23. 童慶斌、洪念民、陳主惠(1999),氣候變遷對水資源影響評估與適應策略研擬,農業工程學報,45(4):73-90。 24. 童慶斌、吳明進、張斐章、李明旭、柳文成、謝龍生(2002),氣候變化綱要公約國家通訊衝擊調適資料建置-氣候、水文、生態部分(一),行政院環境保護署專題研究計畫報告,EPA-91-TA11-03-A100。 25. 張宜信,(1990),台北地區自然降雨雨點粒徑分佈及其與降雨強度之關係,國立台灣大學農業工程研究所碩士論文。 26. 楊文仁、范正成(2003),運用類神經網路建立紋溝間土壤沖蝕推估模式之研究,中華水土保持學報,34(3):271-279。 27. 楊文仁、范正成、張于漢(2005),台灣北部地區最大三十分鐘降雨強度之分析及預測,農業工程學報,51(3):p48-57。 28. 楊文仁,氣候變遷對台灣地區降雨沖蝕指數之影響,國立臺灣大學生物環境系統工程學研究所博士論文,2006。 29. 楊智翔,應用CLIGEN氣候生成模式模擬台灣北部地區有效降雨事件及其驗證,國立台灣大學生物環境系統工程研究所碩士論文,2007。 30. 羅俊雄、沈鴻禧(2002),納莉颱風災因分析及綜合評估檢討報告,防災國家行科技計畫辦公室,NAPHM90-17。 31. 劉紹臣(2009),全球暖化與極端降雨密切相關,中央研究院週報,1245期,p2-3。 32. 盧光輝(1999),降雨沖蝕指數之修訂,中華水土保持學報,30(2):87-94。 33. 盧昭堯、盧光輝、陳臺芳(1997),台北地區降雨特性及其與土壤沖蝕性關係之研究,國科會專題研究計畫報告,NSC-86-2621-P-005-009。 34. 盧昭堯、蘇志強、吳藝芸(2005),台灣地區年降雨沖蝕指數圖之修訂,中華水土保持學報,36(2):159-172。 35. 顔月珠,實用統計方法 : 圖解與實例,1992,p. 193-198。 36. Arnoldus, H. M. J. 1980. An approximation of rainfall factor in the Universal Soil Loss Equation. In Assessment of Erosion, 127-132. M. De Boodt and D Gabriels, eds. New York, N.Y.: John Wiley and Sons. 37. Brown, L. C. and G. R. Foster. 1987. Storm erosivity using idealized intensity distribution. Transaction of the ASAE 30(2): 379-386. 38. Brown, L. R., M. Renner, and C. Flavin. 1998: Vital Signs: The environmental trends that are shaping our future. W. W. Norton & Company, 207pp. 39. Baffaut, C., M. A. Nearing, and A. D. Nick. 1996. Impact of CLIGEN parameters on WEPP-predicted average annual soil loss. Trans. ASAE 39(2): 447-457. 40. Capolongo, D., Diodato, N., Mannaerts, C. M., Piccarreta, M., Strobl, R. O., Analyzing temporal changes in climate erosivity using a simplified rainfall erosivity model in Basilicata (southern Italy). Journal of Hydrology, 2008. 356(1-2): p. 119-130. 41. Chiang, S.-H. and K.-T. Chang, The potential impact of climate change on typhoon-triggered landslides in Taiwan, 2010–2099. Geomorphology, 2010: p. 1-9. 42. Chen, S. C., M. C. Wu, S. Marshall, H. H. M. Juang, and J. O. Roads, 2002: 2xCO2 Eastern Asia Regional Responses in the RSM/CCM3 Modeling System. Global and Planetary Change. A Special Issue, 782,1-9. 43. Cooley, K. R. 1980. Erosivity values for individual storm design. Jour. Irr, and Drainage Div. Amer. Soc. of Civil Engr. 106(IR2): 135-145. 44. Coutinho, M. A. and P. P. Tomás. 1995. Characterization of raindrop size distribution at the Vale Formoso Experimental Erosion Center. Catena 25, pp.187-197. 45. Eigel, J. D. and I. D. Moore. 1983. A simplified technique for measuring size and distribution. Transaction of the ASAE. Vol. 126(4): 1079-1084. 46. Favis-Mortlock, D. T., and J. Boardman. 1995. Nonlinear responses of soil erosion to climate change: A modeling study on the UK South Downs. Catena 25: 365-387. 47. Flanagan, D. C., and S. J. Livingston. 1995. WEPP User Summary: USDA–Water Erosion Prediction Project (WEPP). NSERL Report No. 11. W. Lafayette, Ind.: USDA–ARS National Soil Erosion Research Laboratory. 48. Fan, J.-C., C.-H. Yang, and C.-H. Liu, Establishment of the assessment model of the rainfall erosivity and their annual variation trend in Taipei. 2009. 49. Foster, G.R., F. Lombardi, and W.C. Moldenhauer, Evaluation of Rainfall-Runoff Erosivity Factors for Individual Storms Transactions of the ASAE 1982. 25 (1): p. 124-129 50. Giorgi, F., and L.O. Mearns. 1991. Approaches to regional climate change simulation: A review. Reviews of Geophysics 29, 191-216. 51. Gordon C., C.Cooper, C.A.Senior, H.Banks, J.M.Gregory, T.C.Johns, J.F.B.Mitchell, and R.A.Wood. 2000. The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Climate Dynamics 16(2-3): 147-168. 52. Gunn, R and G. D. Kinzer. 1949. The terminal velocity of fall for water droplets. J. Met., 6: 243-248. 53. G, K., Climate change in Ireland from precipitation and streamflow observations. Advances in Water Resources, 1999. 23(2): p. 141-151. 54. Hsu, H. H. and C. T. Chen. 2002. Observed and projected climate change in Taiwan. Meteorology and Atmospheric Physics, 79: 87-104. 55. IPCC, 1996: Climate Change 1995: The Science of Climate Change. J. T. Houghton, L. A. Meria Filho, B. A. Callander, N. Harris, A. Kattenberg and K. Maskell(eds.), Cambridge, 572pp. 56. IPCC, WGI, 2001. Climate Change 2001-The Scientific Basis: Contribution of Working Group I, to the third Assessment Report of the Intergovernmental Panel on Climate Change, Edited by J.T. Houghton, Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell, C. A. Johnson. 2001, Cambridge University Press, Cambridge, 2001, 881pp. 57. Kinnell, P. I. A. 1981. Rainfall intensity-kinectic energy relationships for soil loss prediction. Soil Sci. Soc. Am. J. 45: 153-155. 58. Liu, S.C., Congbin Fu, Chein-Jung Shiu, Jen-Ping Chen, Futing Wu, Temperature dependence of global precipitation extremes. GEOPHYSICAL RESEARCH LETTERS, 2009. 36: p. 1-4. 59. Meyer, How Rain Intensity Affects Interrill Erosion, Transactions of the ASAE, 1981: p. 1472-1475. 60. Mirza, M.Q., Warrick, R. A., Ericksen, N. J., Kenny, G. J., Trends and persistence in precipitation in the Ganges, Brahmaputra and Meghna river basins. Hydrological Sciences Journal, 1998. 43(6): p. 845-858. 61. McGregor, K. C. and C. K. Mutchler. 1977. Status of the R factor in northern Mississipp. In: Soil erosion: Prediction and control. G. R. Foster, pp.135-142. Soil Conservation Society of America. 62. Nearing, A. M. 2001. Potential changes in rainfall erosivity in the U. S. with climate change during the 21st century. J. Soil and Water Conserv. 56(3): 229-232. 63. Nearing, M. A. 2001. Impacts of Climate Change on Erosivity in the United States: 2000-2050. Pp. 268-270 in Soil Erosion Research for the 21st Century, Proc. Int. Symp. (3-5 January 2001, Honolulu, HI, USA). Eds. J.C. Ascough II and D.C. Flanagan. St. Joseph, MI: ASAE.701P0007 64. Pruski, F. F., and M. A. Nearing. 2002. Runoff and soil loss responses to changes in precipitation: A computer simulation study. J. Soil and Water Conserv. 57(1): 7-16. 65. Pettitt, A.N., A Non-Parametric Approach to the Change-Point Problem. Journal of the Royal Statistical Society. Series C (Applied Statistics), 1979. 28(2): p. 126-135. 66. Renard, K. G., and J. R. Freidmund. 1994. Using monthly precipitation data to estimate the R-factor in the revised USLE. J. Hydrology 157: 287-306. 67. Renard, K. G., G. R. Foster, G. A. Weesies, and J. P. Porter. 1991. RUSLE: Revised universal soil loss equation. J. Soil Water Conserv. 46(1): 30–33. 68. Renard, K. G., G. R. Foster, G. A. Weesies, D. K. McCool, and D. C. Yoder, coordinators. 1997. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation. U. S. Department of Agriculture Handbook 703. 384pp. 69. Sauerborn, P., A. Klein, J. Botschek, and A. Skowronek. 1999. Future rainfall erosivity derived from large-scale climate models: Methods and scenarios for a humid region. Geoderma 93(3-4): 269-276. 70. Sauerborn, P., Dipl. Klein, Dr. J Botschek, Prof. Skowronek, Future rainfall erosivity derived from large-scale climate models — methods and scenarios for a humid region. Geoderma, 1999. 93(3-4): p. 269-276. 71. S. Jebari, R. Berndtsson, A. Bahri and M. Boufaroua, Exceptional Rainfall Characteristics Related to Erosion Risk in Semiarid Tunisia, The Open Hydrology Journal, 2008, 1, 25-33 25. 72. Williams, J. R., C. A. Jones, and P. T. Dyke. 1984. A modeling approach to determining the relationship between erosion and soil productivity. Trans. ASAE 27(1): 129–144. 73. Williams, J., M. A. Nearing, A. Nicks, E. Skidmore, C. Valentine, K. King, and R. Savabi. 1996. Using soil erosion models for global change studies. J. Soil and Water Conserv. 51(5): 381-385. 74. Wischmeier, W. H., and D. D. Smith. 1958. Rainfall energy and its relationship to soil loss. Trans. Am. Geophys. Union 39: 285-291. 75. Wischmeier, W. H. and D. D. Smith. 1978. Predicting Rainfall Erosion Losses-A Guide to Conservation Planning. USDA AGR. Handbook 537. USDA Science and Education Administration. 58pp. 76. Wischmeier, W.H., C.B. Johnson, and B.V. Cross. 1971. A soil erodibility nomograph for farmland and construction sites. J. Soil and Water Conserv. 26:189-193. 77. Wood, R.A., A.B. Keen, J.F.B. Mitchell, and J.M Gregory. 1999: Changing spatial structure of the thermohaline circulation in response to atmospheric CO2 forcing in a climate model. Nature 399:572-575. 78. Yu, P. S., T. C. Yang, and C. K. Wu. 2002. Impact of climate change on water resources in southern Taiwan. Journal of Hydrology. 161-175. 79. Zhang, G. H., M. A. Nearing, and B. Y. Liu. 2005. Potential effects of climate change on rainfall erosivity in the Yellow River Basin of China. Trans. ASAE 48(2): 511-517. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65341 | - |
| dc.description.abstract | 最大三十分鐘降雨強度在預測土壤沖蝕十分重要。本研究蒐集1961~2011年之雨量資料,根據Wischmeier and Smith (1978)之定義篩選有效降雨事件,以乘冪函數配合迴歸分析之方式,建立台北地區之最大三十分鐘降雨強度推估模式。模式1僅用雨量推估,模式2則運用雨量及降雨強度因子推估,利用兩種不同模式,藉以探討模擬之準確性。為觀察每十年間之變異性,本研究將1961~2010年之雨量資料,每10年分為一組,共5組,以進行模式係數之運算。經驗證後,確定模式2準確性高且較前人研究之模式快速實用,故將無30分鐘降雨資料的年份(共16年)之各場降雨之降雨量及降雨強度帶入模式2中,可求得台北地區歷年各場I30模擬值。以每年最大之I30代表該年之最大三十分鐘降雨強度情況,由5年移動平均線發現,變化趨勢不穩定,15年移動平均線則是呈現較為穩定、緩步上升之趨勢。證明雖短期變化較不穩定,但以中、長期而言,台北地區的每年最大三十分鐘降雨強度還是呈現穩定增加之趨勢。
在變異點分析中,得知1983年為1961~2011年歷年降雨沖蝕指數時間序列之顯著變異點。台北地區歷年年降雨沖蝕指數的變化趨勢分析,由5年及15年移動平均線顯示,雖短期變化程度較大,但以中、長期而言,係呈現穩定成長之趨勢。從各階段年降雨沖蝕指數統計結果顯示,近年來台北地區的年降雨沖蝕指數隨著氣候變遷之影響,各階段的平均值呈現大幅成長,且變異性顯著增加,其變化趨勢亦符合1983年為降雨沖蝕指數時間序列變異點之結果,綜合觀之,台北地區之年降雨沖蝕指數,已有趨向極端化之現象產生。 | zh_TW |
| dc.description.abstract | The maximum thirty- minute rainfall intensity (I30) is very important in predicting soil erosion. In this study, 51 years of the rainfall data from 1961 to 2011 were collected from Taipei weather station, and effective rainfall events were selected based on the definition by Wischmeier and Smith (1978).
The model was established to predict the I30 in Taipei area applying the power function regression. The Model 1 was established only by rainfall factor and the Model 2 was by rainfall and rainfall intensity factor. Examine the accuracy of the simulation by two different models. In order to observe the variability between each decade, the study divided the rainfall data from 1961 to 2010 into 5 groups (every 10 years in one group) to calculate the coefficients of theI30 estimated model. Results proved the Model 2 with high accuracy which was more convenient and more practical than the models of the previous studies. Putting the rainfall and rainfall intensity into the Model 2 can obtain the simulate I30 for 16 years without five minutes rainfall data. Taking annual maximum I30 represent I30. The 5-year moving average trend showed instability, and the 15-year moving average was more stable and rising slowly. Although short-term changes were more unstable, the annual I30 showed a steady increase trend for the long-term in the Taipei area. In the change point analysis, the significant change point of the rainfall erosivity index (the R factor) time series for 1961-2011 is in 1983. The R factor trend displayed by the 5-year and 15-year moving average. The short-period was unstable, but the long-period was showing steady growth trend. Statistical results of the annual R factor shows that the average and variability increased significantly through the impact of climate change. The trend also fit the result of change point analysis (1983 is the change point). Therefore, it is proven that the R factort end to extreme in Taipei area. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T23:37:29Z (GMT). No. of bitstreams: 1 ntu-101-R99622004-1.pdf: 2704537 bytes, checksum: 2fb76359ec93127731a10b7cbaad631a (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 謝誌 I
摘要 II ABSTRACT III 圖目錄 VII 表目錄 IX 第一章 研究動機與目的 1 1.1 研究動機 1 1.2 研究目的 2 第二章 文獻回顧 4 2.1最大三十分鐘降雨強度 4 (The Maximum Thirty-Minute Rainfall Intensity) 4 2.2降雨動能(Storm Energy, E) 6 2.3降雨沖蝕指數(Rainfall Erosivity Index) 7 2.4氣候變遷對台灣之影響 18 2.5變異點分析 20 第三章 研究方法 21 3.1研究區域 21 3.2雨量資料處理與計算 26 3.3最大30分鐘降雨強度推估模式 28 3.4降雨沖蝕指數之推估與變異點分析 29 3.4.1降雨沖蝕指數之推估 29 3.4.2變異點分析 29 第四章 分析結果與討論 33 4.1最大30分鐘降雨強度推估模式之建立與驗證 33 4.2推估模式之比較 51 4.3變異點分析結果 53 4.4歷年變化趨勢分析 57 第五章 結論與建議 66 5.1 結論 66 5.2 建議 68 參考文獻 69 附錄、台北站歷年降雨資料(節錄) 76 | |
| dc.language.iso | zh-TW | |
| dc.subject | 降雨沖蝕指數 | zh_TW |
| dc.subject | 變異點分析 | zh_TW |
| dc.subject | 氣候變遷 | zh_TW |
| dc.subject | 最大三十分鐘降雨強度 | zh_TW |
| dc.subject | 土壤沖蝕 | zh_TW |
| dc.subject | The maximum thirty- minute rainfall intensity | en |
| dc.subject | Rainfall erosivity index | en |
| dc.subject | Soil erosion | en |
| dc.subject | Change point analysis | en |
| dc.subject | Climate change | en |
| dc.title | 氣候變遷下台北地區最大三十分鐘降雨強度推估模式之建立與降雨沖蝕指數之變異點分析 | zh_TW |
| dc.title | Establishment of the Models to Assess the Maximum Thirty- Minute Rainfall Intensity and Analysis of Change Points of the Rainfall Erosivity Index in Taipei under Climate Change | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 童慶斌,盧光輝,劉哲欣 | |
| dc.subject.keyword | 最大三十分鐘降雨強度,降雨沖蝕指數,土壤沖蝕,變異點分析,氣候變遷, | zh_TW |
| dc.subject.keyword | The maximum thirty- minute rainfall intensity,Rainfall erosivity index,Soil erosion,Change point analysis,Climate change, | en |
| dc.relation.page | 77 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-07-26 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物環境系統工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 2.64 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
