Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65340
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉進賢(Chein-Shan Liu)
dc.contributor.authorChih-Hsien Huen
dc.contributor.author胡志諴zh_TW
dc.date.accessioned2021-06-16T23:37:26Z-
dc.date.available2013-07-27
dc.date.copyright2012-07-27
dc.date.issued2012
dc.date.submitted2012-07-25
dc.identifier.citation[1] Liu, C.-S., Cone of non-linear dynamical system and group preserving schemes, International Journal of Non-linear Mechanics 36, 1047-1068 (2001).
[2] T.T. Soong, Active Structural Control: Theory and Practice, Longman Scientific and Technical, Essex, England, (1990).
[3] Franz Stetter, 'On a Generalization of the Midpoint Rule,' in Mathematics of Computation, No. 103, Jul. Vol. 22, pp. 661-663 (1968).
[4] D. Lewis, J.C. Simo, Conserving algorithms for the dynamics of Hamiltonian systems on Lie groups, J. Nonlinear Sci. Vol. 4, pp. 253-299 (1994).
[5] F. Diele, L. Lopez, R. Peluso, The Cayley transform in the numerical solution of unitary differential systems, Adv. Comput. Math. Vol. 8, pp. 317-334 (1998).
[6] C. Park, D. J. Scheeres. Solutions of optimal feedback control problem using hamiltonian dynamics and generating function. In IEEE conference on Decision and Control, page accepted, Maui, Hawaii, (2003).
[7] C. Park, D. J. Scheeres. Solutions of optimal feedback control problem with general boundary conditions using hamiltonian dynamics and generating function. Submitted to Automatica, (2004).
[8] D. J. Scheeres, C. Parkm, V. M. Guibout. Solving optimal control problems with generating function. In AAS/AIAA Astrodynamics Specialist Meeting, pages Paper AAS 03-575, Big Sky, Montana (2003).
[9] A. Feldbaum, Principles Theoriques des Systems Asservis Optimaux, Mir, Moscow, (1973).
[10] J. Vlassenbroeck, R. vanDooren, A Chebyshev technique for solving nonlinear optimal control problem. IEEE Trans. Auto. Contr., Vol. 33, pp. 333-340 (1988).
[11] Kubicek, M., Hlavacek, V.: Numerical Solution of Nonlinear Boundary Value Problems with Applications. Prentice-Hall, New York (1983).
[12] Keller, H.B.: Numerical Methods for Two-Point Boundary Value Problems. Dover, New York (1992).
[13] Ascher, U., Mattheij, R., Russell, R.: Numerical Solution of Boundary Value Problems for Ordinary Differential Equations. SIAM, Philadelphia (1995).
[14] Holsapple, R., Venkataraman, R., Doman, D.: A modified simple method for solving two point boundary value problems. In: Proceedings of the IEEE Aerospace Conference. Vol. 6, pp. 2783-2790 (2003).
[15] Liu, C.-S., The Lie-group shooting method for nonlinear two-point boundary value problems exhibiting multiple solutions. CMES: Computer Modeling in Engineering & Sciences, Vol. 13, pp. 149-163 (2006).
[16] Liu, C.-S., Efficient shooting methods for the second order ordinary differential equations. CMES: Computer Modeling in Engineering & Sciences, Vol. 15, pp. 69-86 (2006).
[17] Liu, C.-S., The Lie-group shooting method for singularly perturbed two-point boundary value problems. CMES: Computer Modeling in Engineering & Sciences, Vol. 15, pp. 179-196 (2006).
[18] Liu, C.-S., An efficient backward group preserving scheme for the backward in time Burgers equation. CMES: Computer Modeling in Engineering & Sciences, Vol. 12, pp. 55-65 (2006).
[19] Liu, C.-S., One-step GPS for the estimation of temperature-dependent thermal conductivity. International Journal of Heat and Mass Transfer, Vol. 49, pp. 3084-3093 (2006).
[20] Liu, C.-S., An efficient simultaneous estimation of temperature-dependent thermophysical properties. CMES: Computer Modeling in Engineering & Sciences, Vol. 14, pp. 77-90 (2006).
[21] Liu, C.-S., Identification of temperature-dependent thermophysical properties in a partial differential equation subject to extra final measurement data. Numerical Methods for Partial Differential Equations, Vol. 23, pp. 1083-1109 (2007).
[22] Liu, C.-S.; Liu, L. W.; Hong, H. K., Highly accurate computation of spatial dependent heat conductivity and heat capacity in inverse thermal problem. CMES: Computer Modeling in Engineering & Sciences, Vol. 17, pp. 1-18 (2007).
[23] Liu, C.-S., The Lie-group shooting method for thermal stress evaluation through an internal temperature measurement. CMC: Computers, Materials & Continua, Vol. 8, pp. 1-16 (2008).
[24] Liu, C.-S.; Chang, C.-W.; Chang, J.-R., A new shooting method for solving boundary layer equations in fluid mechanics. CMES: Computer Modeling in Engineering & Sciences, Vol. 12, pp. 67-81 (2008).
[25] Liu, C.-S.; Chang, J. R.; Chang, K. H.; Chen, Y. W., Simultaneously estimating the time-dependent damping and stiffness coefficients with the aid of vibrational data. CMC: Computers, Materials & Continua, Vol. 7, pp. 97-108 (2008).
[26] Liu, C.-S., A Lie-group shooting method for computing eigenvalues and eigenfunctions of Sturm-Liouville problems. CMES: Computer Modeling in Engineering & Sciences, Vol. 26, pp. 157-168 (2008).
[27] Liu, C.-S., A Lie-group shooting method for post buckling calculations of elastica. CMES: Computer Modeling in Engineering & Sciences, Vol. 30, pp. 1-16 (2008).
[28] Liu, C.-S., Identifying time-dependent damping and stiffness functions by a simple and yet accurate method. Journal of Sound and Vibration, Vol. 318, pp. 148-165 (2008).
[29] Liu, C.-S., A Lie-group shooting method for simultaneously estimating the time dependent damping and stiffness coefficients. CMES: Computer Modeling in Engineering & Sciences, Vol. 27, pp. 137-149 (2008).
[30] Liu, C.-S., The Lie-group Shooting Method for Solving Multi-dimensional Nonlinear Boundary Value Problems. J Optim Theory Appl, pp. 468-495 (2012).
[31] Davies, M. J., Time optimal control and the Duffing oscillator. J. Inst. Math. Appl., Vol. 9, pp. 357-369 (1972).
[32] El-Kady, M.; Elbarbary, E. M. E., A Chebyshev expansion method for solving nonlinear optimal control problems. Appl. Math. Comput., Vol. 129, pp. 171-182 (2002).
[33] van Dorren, R.; Vlassenbroeck, J., Chebyshev series solution of the controlled Duffing oscillator. J. Comp. Phys., Vol. 47, pp. 321-329 (1982).
[34] Lakestani, M.; Razzaghi, M.; Dehghan, M., Numerical solution of the controlled Duffing oscillator by semi-orthogonal spline wavelets. Phys. Scr., Vol. 74, pp. 362-366 (2006).
[35] Mohsen Razzaghi, Gamal Elnagar, Numerical solution of the controlled Duffing oscillator by the pseudospectral method, Journal of Computational and Applied Mathematics, Vol. 56, pp. 253-261 (1994).
[36] H.R. Marzban, M. Razzaghi, Numerical solution of the controlled Duffing oscillator by hybrid functions, Applied Mathematics and Computation, Vol. 140, pp.179-190 (2003).
[37] S. Peng, A Generalized Dynamic Programming Principle and Hamilton-Jacobi-Bellman Equatin, Stochastics and Stochastics Reports, Vol. 38, pp. 119-134 (1992).
[38] T.T. Soong, Active Structural Control: Theory and Practice, Longman Scientific and Technical, Essex, England, (1990).
[39] J.-N. Yang, Application of Optimal Control Theory to Civil Engineering Structures, Journal of the Engineering Mechanics Division, Vol. 101, No. 6, pp. 819-838 (1975).
[40] R. L. Burden and J. D. Faires, Numerical Analysis, International student edition ISE, THOMSON BROOKS/COLE, USA, 8th edition
[41] Borel, Armand, Linear algebraic groups, Graduate Texts in Mathematics, Berlin, New York, Vol. 126, No. 2, (1991).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65340-
dc.description.abstract結構主動控制就是由控制元件對結構系統施加額外作用力,以改善土木結構之動力特性,或提高勁度,或提高阻尼,來達到減震消能之效果。結構主動控制系統包含三個核心部分:感應計、控制律及控制器。感應計佈設在土木結構及控制器上,以量測其動力反應;控制律就是控制力施加之法則,根據結構及控制器之反應,決定控制力施加之時機、大小及方向;控制器就是控制力產生之機構,透過一系列的動力系統,將控制力施加在土木結構上。而用於非線性結構物上最佳控制理論研究上,通常將此最佳控制問題轉換為兩點邊界值問題,而在本論文用於求解兩點邊界值問題的數值解法為李群打靶法,再配合四階精度龍格-庫塔法求出數值結果。而李群打靶法對於求解未知的邊界值問題是一個強而有力的數值解法,此法根據保群算法中群的封閉性質、李群的性質、保長性質以及一些簡單數學的推導,例如:中值原理的觀念推導而來。再將此數值解法運用在線性最佳化控制、單自由度達芬非線性振子以及雙自由度達芬非線性振子上。本文當中使用到程式語言FORTRAN進行數值分析,並透過繪圖軟體GRAPHER將數值模擬圖形呈現出來,並且期望未來能應用在土木工程發展上。zh_TW
dc.description.abstractIn order to improve the dynamic characteristics, the stiffness and the damping of civil engineering structures to achieve a certain energy dissipation effect, and the active structural control is exerted additional force by the control elements to the traditional structural system. The active structural control system consists of three core components: the sensor, the control law and actuator. Sensors are used to measure the dynamic response which layout in structures and controllers of the civil engineering. According to the response of the structure and controllers, decide the timing, size and the direction of control being imposed on the structure. The actuator is developed the institutions by the control force and which is applied to structures of civil engineering through a series of dynamical systems. In the study of optimal control theory for nonlinear structures, one often encounters two-point boundary-value problems (TPBVPs). In this study, the numerical solution for two-point boundary value problem is the Lie group shooting method (LGSM), and then with the fourth-order Runge-Kutta method (RK4). The LGSM is a powerful technique to search the unknown initial conditions. These methods are gradually derived based on the closure property of the group, the Lie group property and the length preserving property in GPS, some simple mathematical derivation, the mid-point rule. And it will be used to this numerical solution of the linear optimal control, the single degree nonlinear Duffing osillator, as well as two degrees nonlinear Duffing osillator. In this thesis, we use programming language FORTRAN for the numerical analysis and plot the numerical results by the GRAPHER. Finally, we want to apply this method on the development of the civil engineering in the future.en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:37:26Z (GMT). No. of bitstreams: 1
ntu-101-R99521236-1.pdf: 6583707 bytes, checksum: 179d123dd19ff00aea8f908ce8aa513e (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
摘要 ii
ABSTRACT iii
目錄 v
圖目錄 viii
第 一 章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 研究動機與目的 4
1.4 論文架構 5
第 二 章 數值分析方法 7
2.1 四階龍格-庫塔法 8
2.2 保群算法 11
2.2.1 群 11
2.2.2 李群(Lie Group) 13
2.2.3 增廣動態系統 14
2.2.4 勞倫茲群和李代數 17
2.2.5 光錐構造 18
2.2.6 凱萊轉換(Cayley Transformation) 20
2.2.7 指數映射 25
2.3 李群打靶法 29
2.3.1 打靶法 29
2.3.2 一步保群算法 30
2.3.3 廣義中值原理 34
2.3.4 在光錐上兩點之間的普適李群映射 36
2.3.5 李群打靶法 40
第 三 章 單自由度達芬非線性振子的最佳控制問題 43
3.1 最佳化控制 43
3.2 最佳控制計算法則 44
3.2.1 廣義最佳控制計算程序 44
3.2.2 結構物之經典二次型最佳控制程序 48
3.2.3 最佳狀態回饋控制律 50
3.2.4 黎卡提矩陣微分方程之簡化 52
3.3 單自由度達芬非線性振子的最佳化控制 53
3.3.1 單自由度達芬非線性方程式 53
3.3.2 振子的概念描述 56
3.3.3 單自由度達芬非線性振子與其最佳化程序 60
第 四 章 雙自由度達芬非線性振子的最佳控制問題 66
4.1 雙自由度達芬非線性振子方程描述 66
4.2 雙自由度達芬非線性振子方程之最佳化程序 67
第 五 章 數值模擬計算與結果分析 75
5.1 數值算例一 75
5.2 數值算例二 77
5.3 數值算例三 82
5.4 數值算例四 84
5.5 數值算例五 85
5.6 數值算例六 87
第 六 章 結論與未來工作 114
6.1 結論 114
6.2 未來工作 116
參考文獻 117
dc.language.isozh-TW
dc.subject哈密頓函數zh_TW
dc.subject保群算法zh_TW
dc.subject李群打靶法zh_TW
dc.subject最佳化控制zh_TW
dc.subject達芬振子zh_TW
dc.subjectduffing oscillatoren
dc.subjectLie-group shooting method (LGSM)en
dc.subjectoptimal controlen
dc.subjectHamiltonian functionen
dc.subjectgroup preserving schemes (GPS)en
dc.title以李群打靶法求解達芬非線性振子的最佳控制問題zh_TW
dc.titleBy Using the Lie-group Shooting Method to Solve the Optimal Control Problems of Nonlinear Duffing Oscillatorsen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee范佳銘(Chia-Ming Fan),張致文(Chih-Wen Chang)
dc.subject.keyword保群算法,李群打靶法,最佳化控制,哈密頓函數,達芬振子,zh_TW
dc.subject.keywordgroup preserving schemes (GPS),Lie-group shooting method (LGSM),optimal control,Hamiltonian function,duffing oscillator,en
dc.relation.page121
dc.rights.note有償授權
dc.date.accepted2012-07-26
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
6.43 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved