Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 流行病學與預防醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65339
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蕭朱杏(Chuhsing Kate Hsiao)
dc.contributor.authorYen-Chen Fengen
dc.contributor.author馮嬿臻zh_TW
dc.date.accessioned2021-06-16T23:37:22Z-
dc.date.available2013-07-01
dc.date.copyright2012-09-17
dc.date.issued2012
dc.date.submitted2012-07-26
dc.identifier.citationAndo, T. (2007). Bayesian predictive information criterion for the evaluation of hierarchical Bayesian and empirical Bayes models. Biometrika, 94(2), 443-458.
Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., . . . Consortium, G. O. (2000). Gene Ontology: tool for the unification of biology. Nature Genetics, 25(1), 25-29.
Chen, Z., Liu, Q., & Nadarajah, S. (2012). A new statistical approach to detecting differentially methylated loci for case control Illumina array methylation data. [Research Support, N.I.H., Extramural]. Bioinformatics, 28(8), 1109-1113.
Das, P. M., & Singal, R. (2004). DNA methylation and cancer. Journal of Clinical Oncology, 22(22), 4632-4642.
Down, T. A., Rakyan, V. K., Turner, D. J., Flicek, P., Li, H., Kulesha, E., . . . Beck, S. (2008). A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis. [Research Support, Non-U.S. Gov't]. Nat Biotechnol, 26(7), 779-785.
Esteller, M. (2007). Cancer epigenomics: DNA methylomes and histone-modification maps. Nature Reviews Genetics, 8(4), 286-298.
Esteller, M. (2008). Molecular origins of cancer: Epigenetics in cancer. New England Journal of Medicine, 358(11), 1148-1159.
Fang, Y. C., Lai, P. T., Dai, H. J., & Hsu, W. L. (2011). MeInfoText 2.0: gene methylation and cancer relation extraction from biomedical literature. Bmc Bioinformatics, 12(1), 471.
Feinberg, A. P., & Irizarry, R. A. (2010). Stochastic epigenetic variation as a driving force of development, evolutionary adaptation, and disease. Proceedings of the National Academy of Sciences of the United States of America, 107, 1757-1764.
Gardiner-Garden, M., & Frommer, M. (1987). CpG islands in vertebrate genomes. Journal of molecular biology, 196(2), 261.
Hosack, D. A., Dennis, G., Sherman, B. T., Lane, H. C., & Lempicki, R. A. (2003). Identifying biological themes within lists of genes with EASE. Genome Biology, 4(10).
Huang, D. W., Sherman, B. T., & Lempicki, R. A. (2009a). Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Research, 37(1), 1-13.
Huang, D. W., Sherman, B. T., & Lempicki, R. A. (2009b). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols, 4(1), 44-57.
Irizarry, R. A., Ladd-Acosta, C., Carvalho, B., Wu, H., Brandenburg, S. A., Jeddeloh, J. A., . . . Feinberg, A. P. (2008). Comprehensive high-throughput arrays for relative methylation (CHARM). Genome Research, 18(5), 780-790.
Irizarry, R. A., Ladd-Acosta, C., Wen, B., Wu, Z. J., Montano, C., Onyango, P., . . . Feinberg, A. P. (2009). The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nature Genetics, 41(2), 178-186.
Jaffe, A. E., Feinberg, A. P., Irizarry, R. A., & Leek, J. T. (2012). Significance analysis and statistical dissection of variably methylated regions. Biostatistics, 13(1), 166-178.
Jeong, J., Li, L., Liu, Y., Nephew, K. P., Huang, T. H., & Shen, C. (2010). An empirical Bayes model for gene expression and methylation profiles in antiestrogen resistant breast cancer. [Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S.]. BMC Med Genomics, 3, 55.
Kuan, P. F., & Chiang, D. Y. (2012). Integrating Prior Knowledge in Multiple Testing under Dependence with Applications to Detecting Differential DNA Methylation. Biometrics.
Laird, P. W. (2010). Principles and challenges of genome-wide DNA methylation analysis. Nature Reviews Genetics, 11(3), 191-203.
Laurila, K., Oster, B., Andersen, C. L., Lamy, P., Orntoft, T., Yli-Harja, O., & Wiuf, C. (2011). A Beta-mixture model for dimensionality reduction, sample classification and analysis. Bmc Bioinformatics, 12.
McCabe, M. T., Brandes, J. C., & Vertino, P. M. (2009). Cancer DNA Methylation: Molecular Mechanisms and Clinical Implications. Clinical Cancer Research, 15(12), 3927-3937.
Rakyan, V. K., Down, T. A., Maslau, S., Andrew, T., Yang, T. P., Beyan, H., . . . Spector, T. D. (2010). Human aging-associated DNA hypermethylation occurs preferentially at bivalent chromatin domains. Genome Research, 20(4), 434-439.
Rein, B. J. D., Gupta, S., Dada, R., Safi, J., Michener, C., & Agarwal, A. (2011). Potential markers for detection and monitoring of ovarian cancer. Journal of Oncology, 2011.
Siegmund, K. D. (2011). Statistical approaches for the analysis of DNA methylation microarray data. Human Genetics, 129(6), 585-595.
Teschendorff, A. E., Menon, U., Gentry-Maharaj, A., Ramus, S. J., Weisenberger, D. J., Shen, H., . . . Widschwendter, M. (2010). Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer. Genome Research, 20(4), 440-446.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65339-
dc.description.abstractDNA methylation is known to be associated with cancer susceptibility. Such biochemical process, however, is also affected by other factors such as age, tissues, nutrition and other environmental variates. In other words, the methylation pattern can vary greatly between and within individuals. An appropriate study design for DNA methylation, therefore, should be able to control these sources of variation. Because most current case-control studies for identification of differentially methylated CpG sites may not be able to account for this heterogeneity, we propose in the present study for matched cases and controls a Bayesian hierarchical model with specially designed priors for CpG sites locating in different areas. This model can accommodate the individual heterogeneity in methylation data and allows the CpG sites to express non-exchangeable patterns. The analysis showed that this model can incorporate more biological interpretation with two different types of prior distributions considered for CpG islands and non-CpG enriched regions, respectively. The United Kingdom Ovarian Cancer Population Study (UKOPS) was used for illustration; methylation data from the study was generated by Illumina Infinium BeadArray technology. Parameters were estimated by Markov chain Monte Carlo (MCMC) method using OpenBUGS software package. The hyperparameter λ is of interest to measure methylation difference between case and age-matched control at each specific CpG. Probability of λ>0 in posterior samples was calculated for each CpG locus; 0.70, 0.90, 0.95, and 0.99 cut-off points of Pr (λ_i>0) resulted in 7877, 1068, 421, and 90 potential hypermethylated CpGs, respectively. A gene ontology analysis showed that 398 genes of hypermethylated CpGs in the 0.95 cutoff group were enriched in functions associated with carcinogenesis, including programmed cell death, positive regulation of cell cycle,
and immune cell activation.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:37:22Z (GMT). No. of bitstreams: 1
ntu-101-R00849004-1.pdf: 1479633 bytes, checksum: 5a5ca4e18809641b707cbe0de4c960ed (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents1. Introduction 1
2. Methods 3
2.1 Bayesian hierarchical model 3
2.2 Formulation of priors on 흀풊 4
2.2.1 Correlations for CpG loci 4
2.2.2 Prior specification on hyper-parameters α_i and β_i 6
3. Results 8
4. Discussion 11
References 14
 
Lists of Figures and Tables
Figure 1. DNA methylation patterns are altered in cancer cells 16
Figure 2. Aging-associated CpG locus 17
Figure 3. Hierarchical model illustration 18
Figure 4. Methylation distribution before and after quantile normalization 19
Figure 5. Locations and correlation plots of blocks on chromosome 21 20
Figure 6. Correlation plots of ordered CpGs based on CGI status 21
Figure 7. OpenBUGS output of chromosome 21 22

Table 1. Information on the 8 blocks of chromosome 21 23
Table 2. Sensitivity analysis for 흀풊 24
Table 3. Number of CpGs and genes under different cutoff Pr (λ_i>0) 24
Table 4. Gene ontology analysis 25
Table 5. Gene methylation and ovarian cancer 26
dc.language.isoen
dc.subjectCpG位點之先驗知識zh_TW
dc.subjectCpG島之高度甲基化zh_TW
dc.subject貝氏統計方法zh_TW
dc.subject年齡配對之病例對照設計zh_TW
dc.subjectprior knowledge for CpG locationen
dc.subjectCpG island hypermethylationen
dc.subjectBayesian approachen
dc.subjectage matchingen
dc.title以貝氏階層模型對人類基因體DNA高度甲基化的情形進行機率推論zh_TW
dc.titleBayesian Inference of DNA Hypermethylation Based on Global Methylation Profilingen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳為堅(Wei J. Chen),郭柏秀(Po-Hsiu Kuo),陳保中(Pau-Chung Chen)
dc.subject.keywordCpG島之高度甲基化,貝氏統計方法,年齡配對之病例對照設計,CpG位點之先驗知識,zh_TW
dc.subject.keywordCpG island hypermethylation,Bayesian approach,age matching,prior knowledge for CpG location,en
dc.relation.page26
dc.rights.note有償授權
dc.date.accepted2012-07-26
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept流行病學與預防醫學研究所zh_TW
顯示於系所單位:流行病學與預防醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
1.44 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved