Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65329
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor戴子安(Chi-An Dai)
dc.contributor.authorKuo-Chang Kauen
dc.contributor.author高國璋zh_TW
dc.date.accessioned2021-06-16T23:36:50Z-
dc.date.available2017-08-10
dc.date.copyright2012-08-10
dc.date.issued2011
dc.date.submitted2012-07-26
dc.identifier.citation1. Kraft, A.; Grimsdale, A. C.; Holmes, A. B. Angew. Chem. Int. Ed. 1998, 37, 402-
428.
2. Bernius, M. T.; Inbasekaran, M.; O'Brien, J.; Wu, W. S. Adv. Mater. 2000, 12,
1737-1750.
3. Hoeben, F. J. M.; Jonkheijm, P.; Meijer, E. W.; Schenning, A. P. H. J. Chem. Rev.
2005, 105, 1491-1546.
4. Liu, J. S.; Sheina, E.; Kowalewski, T.; McCullough, R. D. Angew. Chem. Int. Ed.
2002, 41, 329-332.
5. Radano, C. P.; Scherman, O. A.; Stingelin-Stutzmann, N.; Mller, C.; Breiby, D.
W.; Smith, P.; Janssen, R. A. J.; Meijer, E. W. J. Am. Chem. Soc. 2005, 127, 12502-12503.
6. Iovu, M. C.; Jeffries-El, M.; Sheina, E. E.; Cooper, J. R.; McCullough, R. D.
Polymer 2005, 46, 8582-8586.
7. Iovu, M. C.; Zhang, R.; Cooper, J. R.; Smilgies, D. M.; Javier, A. E.; Sheina, E.;
Kowalewski, T.; McCullough, R. D. Macromol. Rapid. Commun. 2007, 28, 1816-1824.
8. Iovu, M. C.; Craley, C. R.; Jeffries-EL, M.; Krankowski, A. B.; Zhang, R.;
Kowalewski, T.; McCullough, R. D. Macromolecules 2007, 40, 4733-4735.
9. Dai, C. A.; Yen, W. C.; Lee, Y. H.; Ho, C. C.; Su, W. F. J. Am. Chem. Soc. 2007,
129, 11036-11038.
10. Ho, C. C.; Lee, Y. H.; Dai, C. A.; Segalman, R. A.; Su, W. F. Macromolecules
2009, 42, 4208-4219.
11. Lee, Y. H.; Chang, C. J.; Kao, C. J.; Dai, C. A. Langmuir 2010, 26, 4196-4206.
12. Cho, G.; Jung, M.; Yang, H.; Song, J. H.; Sung, M. M. Langmuir 2006, 22, 4896-
4898.
13. Boudouris, B. W.; Frisbie, C. D.; Hillmyer, M. A. Macromolecules 2008, 41, 67-
75.
14. Sivula, K.; Ball, Z. T.; Watanabe, N.; Frechet, J. M. J. Adv. Mater. 2006, 18, 2-6.
15. Botiz, I.; Darling, S. B. Macromolecules 2009, 42, 8211-8217.
16. Iovu, M. C.; Sheina, E.; Gil, R. R.; McCullough, R. D. Macromolecules 2005, 38,
8649.
17. Zhang, Y.; Tajima, K.; Hirota, K.; Hashimoto, K. J. Am. Chem. Soc. 2008, 130,
7812.
18. Oshimidzu, K.; Ueda, M. Macromolecules 2008, 41, 5289.
19. Wu, P. Z.; Ren, G.; Li, C.; Mezzenga, R.; Jenekhe, S. Macromolecules 2009, 42,
2317-2320.
20. Yokoyama, A.; Kato, R.; Miyakoshi, R.; Yokozawa, T. Macromolecules 2008, 41,
7271.
21. Miyakoshi, R.; Yokoyama, A.; Yokozawa, T. Chem. Lett. 2008, 37, 1022-1023.
22. He, M.; Zhao, L.; Wang, J.; Han , W.; WYang, Y.; Qiu, F.; Lin, Z. ACS Nano
2010, 4, 3241-3247.
23. Zhang, Y.; Tajima, K.; Hashimoto, K. Macromolecules 2009, 42, 7008-7015.
24. Matsen, M. W.; Bates, F. S. 1996, 29, 1091-1098.
25. Hamley, I. W. The Physics of Block Copolymers 1998.
26. Bates, F. S.; Fredrickson, G. H. Phys. Today 1999, 52, 32.
27. Semenov, A. N. Sov. Phys. JETP 1985, 61, 733.
28. Oldmstead, P. D.; Milner, S. T. Phys. Rev. Lett. 1994, 72, 936.
29. Gido, S. P.; Schwark, D. W.; Thomas, E. L.; Goncalves, M. Macromolecules 1993,
26, 2636-2640.
30. Kraft, A.; Grimsdale, A. C.; Holmes, A. B. Angew. Chem. Int. Ed. 1998, 37, 402-
428.
31. Bernius, M. T.; Inbasekaran, M.; O'Brien, J.; Wu, W. S. Adv. Mater. 2000, 12, 1737-1750.
32. Hoeben, F. J. M.; Jonkheijm, P.; Meijer, E. W.; Schenning, A. P. H. J. Chem. Rev. 2005, 105,
1491-1546.
33. Leclère, P.; Parente, V.; Brédas, J. L.; François, B.; Lazzaroni, R. Chem. Mater. 1998, 10, 4010-
4014.
34. Cho, G.; Jung, M.; Yang, H.; Song, J. H.; Sung, M. M. Langmuir 2006, 22, 4896-4898.
35. Boudouris, B. W.; Frisbie, C. D.; Hillmyer, M. A. Macromolecules 2008, 41, 67-75.
36. Lee, Y. H.; Chang, C. J.; Kao, C. J.; Dai, C. A. Langmuir 2010, 26, 4196-4206.
37. Olsen, B. D.; Segalman, R. A. Macromolecules 2005, 38, 10127-10137.
38. Olsen, B. D.; Segalman, R. A. Macromolecules 2006, 39, 7078-7083.
39. Olsen, B. D.; Segalman, R. A. Macromolecules 2007, 40, 6922-6929.
40. Ho, C. C.; Lee, Y. H.; Dai, C. A.; Segalman, R. A.; Su, W. F. Macromolecules 2009, 42, 4208-4219.
41. Olsen, B. D.; Segalman, R. A. Macromolecules 2005, 38, 10127-10137.
42. Olsen, B. D.; Segalman, R. A. Macromolecules 2006, 39, 7078-7083.
43. Olsen, B. D.; Segalman, R. A. Macromolecules 2007, 40, 6922-6929.
44. Ho, C. C.; Lee, Y. H.; Dai, C. A.; Segalman, R. A.; Su, W. F. Macromolecules 2009, 42, 4208-
4219.
45. Sary, N.; Brochon, C.; Hadziioannou, G.; Mezzenga, R. Eur. Phys. J. E 2007, 24, 379–384.
46. Sary, N.; Rubatat, L.; Brochon, C.; Hadziioannou, G.; Ruokolainen, J.; Mezzenga, R.
Macromolecules 2007, 40, 6990-6997.
47. Sary, N.; Mezzenga, R.; Brochon, C.; Hadziioannou, G.; Ruokolainen, J. Macromolecules 2007, 40, 3277-3286.
48. Liu, J.; Tanaka, T.; Sivula, K.; Alivisatos, A. P.; Frechet, J. M. J. J. Am. Chem. Soc.
2004, 126, 6550-6551.
49. Li, G.; Shrotriya, V.; Huang, J.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y. Nat. Mater. 2005, 4,
864-868.
50. Sirringhaus, H. Adv. Mater. 2005, 17, 2411–2425.
51. Sirringhaus, H.; Wilson, R. J.; Friend, R. H.; Inbasekaran, M.; Wu, W.; Woo, E.
P.; Grell, M.; Bradley, D. D. C. Appl. Phys. Lett. 2000, 77, 406.
52. Sirringhaus, H.; Tessler, N.; Friend, R. H. Science 1998, 280, 1741-1744.
53. Thompson, B. C.; Frechet, J. M. J. Angew. Chem. Int. Ed. 2008, 47, 58-77.
54. Hotta, S.; Rughooputh, S. D. D. V.; Heeger, A. J.; Wudl, F. Macromolecules 1987, 20, 212-215.
55. Sugimoto, R.; Takeda, S.; Gu, H. B.; Yoshini, K. Chem. Expr. 1986, 1, 635-638.
56. Hotta, S.; Soga, M.; Sonoda, N. Synth. Met. 1988, 26, 267.
57. Lowe, R. D.; Khersonsky, S. M.; McCullough, R. D. Adv. Mater. 1999, 11, 250.
58. Liu, J. S.; Sheina, E.; Kowalewski, T.; McCullough, R. D. Angew. Chem. Int. Ed. 2002, 41, 329-
332.
59. Iovu, M. C.; Zhang, R.; Cooper, J. R.; Smilgies, D. M.; Javier, A. E.; Sheina, E.; Kowalewski, T.;
McCullough, R. D. Macromol. Rapid. Commun. 2007, 28, 1816-1824.
60. Iovu, M. C.; Sheina, E.; Gil, R. R.; McCullough, R. D. Macromolecules 2005, 38, 8649.
61. Zhang, Y.; Tajima, K.; Hirota, K.; Hashimoto, K. J. Am. Chem. Soc. 2008, 130,
7812.
62. Oshimidzu, K.; Ueda, M. Macromolecules 2008, 41, 5289.
63. Wu, P. Z.; Ren, G.; Li, C.; Mezzenga, R.; Jenekhe, S. Macromolecules 2009, 42, 2317-2320.
64. Zhang, Y.; Tajima, K.; Hashimoto, K. Macromolecules 2009, 42, 7008-7015.
65. Miyakoshi, R.; Yokoyama, A.; Yokozawa, T. J. Am. Chem. Soc. 2005, 127, 17542.
66. Miyakoshi, R.; Shimoto, K.; Yokoyama, A.; Yokozawa, T. J. Am. Chem. Soc. 2006, 128, 16012.
67. Yokoyama, A.; Suzuki, H.; Kubota, J.; Ohuchi, K.; Higashimura, H.; Yokozawa, T. J. Am. Chem.
Soc. 2007, 129, 7236.
68. Yokoyama, A.; Kato, R.; Miyakoshi, R.; Yokozawa, T. Macromolecules 2008, 41, 7271.
69. Miyakoshi, R.; Yokoyama, A.; Yokozawa, T. Chem. Lett. 2008, 37, 1022-1023.
70. Tu, G.; Li, H.; Foster, M.; Heiderhoff, R.; Balk, L. J.; Sigel, R.; Scherf, U. Small 2007, 3, 1001.
71. Gutacker, A.; Koenen, N.; Scherf, U. Macromol. Rapid. Commun. 2008, 29, F50-F51.
72 Esumi, K.; Houdatsu, H.; Yoshimura, T. Langmuir 2004, 20, 2536-2538.
73 Templin, M.; Franck, A.; DuChesne, A.; Leist, H.; Zhang, Y. M.; Ulrich, R.;
Schadler, V.; Wiesner, U. Science 1997, 278, 1795-1798.
74 Widawski, G.; Rawiso, M.; Francois, B. Nature 1994, 369, 387-389.
75 Yeh, S.W.; Wei, K.H.; Sun, Y.S. C.; Jeng, U.S.; Liang, K.S. Macromolecules 2008, 38, 6559-6565.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65329-
dc.description.abstract含有共軛鏈段之團聯共聚高分子由於本身具備的自組裝特性可進而有效藉由結構上的改變來調控其機械與光電特性,因而逐漸受到各界廣泛的注意。因此,瞭解此類含有共軛鏈段之團聯共聚高分子其自組裝特性以利後續的應用發展乃是相當重要的一環。然而目前在此研究課題上仍有許多未知的現象有待探索。在本論文中提到利用格林納聚合法一系列的PPP-P3HT雙共軛團聯共聚高分子已被成功的合成出來,並同時固定PPP練段長度進而改變P3HT分子量,一系列高分子與單體經NMR與GPC鑑定。
將高分子與碳六十衍生物PCBM/ICBA在不同溶劑下可得到不同的形態與光學性質,並經由各式儀器逕行分析,像是UV-Vis光譜,PL光譜,及XRD,TEM等等。藉由高分子PPP-P3HT之自組裝,可有效分散PCBM,同時ICBA的分散性也比PCBM好。此外,可利用選擇溶劑和製成方法的不同而改變PCBM分布之區域在PPP或是P3HT中,而ICBA在block copolymers的光電轉換效率可達2%,然而我們亦注意到團聯共聚合物混摻PCBM奈米有機物後對於發光有一quench效果,主因是由於高分子受到光激發後電子與電洞經由PPP-P3HT/PCBM混成系統的能階傳導造成之電荷分離效應所致。最後在太陽能元件效率上已可達到3.5%,因此在未來的應用上具有非常大的潛力。
zh_TW
dc.description.abstractIn this study, all-conjugated rod-rod poly(2,5-dihexyloxy-p-phenylene)- b-poly(3-hexylthiophene) (PPP-P3HT) block copolymers with different block ratio between PPP and P3HT were synthesized and their self-assembly behavior was investigated. A series of monodisperse PPP-P3HT block copolymers consisting of a nearly constant molecular weight PPP block and a different molecular weight P3HT block was synthesized via a sequential Grignard metathesis method (GRIM). Gel permeation chromatographer, NMR spectra and transmission electron microscopy were used to characterize the block copolymers.
The blending system of PPP-P3HT and PCBM/ICBA was made using different solvents such as dichlorobenzene and toluene followed by drop-casting/spin-coating the resulting solutions for the fabrication of PPP-P3HT/PCBM or PPP-P3HT/ICBA thin films. These systems afford different properties, such as morphology and optical properties. In addition, the morphology, thermal and optoelectronic properties of the blending system were studied by using FTIR, UV-VIS, XRD, photoluminescence spectroscopy and transmission electron microscopy. We find that the aggregation of polymer blending PCBM can be dispersed by the self-assembly of PPP-P3HT and the dispersion of PPP-P3HT/ICBA is better than the PPP-P3HT/PCBM in ODCB solvent. Besides, The existence domain of PCBM in PPP or P3HT can be controlled by the used solvents and fabrication in the blending system of PPP-P3HT and PCBM. the Incident Photon Conversion Efficiency in the PPP-P3HT block copolymers blending with ICBA can be performed up to 2.0%, and the solar cell performance of PPP-P3HT/PCBM films was investigated. The best efficiency is 3.50%.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:36:50Z (GMT). No. of bitstreams: 1
ntu-100-R99524070-1.pdf: 9806323 bytes, checksum: 6c6a29f3257bd6915e8c3cec8f48a11a (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsContent
致謝 I
摘要 II
Abstract III
Content IV
Figure Caption VIII
Table Caption XV
Chapter 1 Introduction 1
Chapter 2 Literature Review 5
2-2 Self-assembly of π-conjugated block copolymers 9
2-3 Self-assembly of P3HT-containing block copolymers 13
2-4 Self-assembly of all-conjugated block copolymers 15
2-5 In-Situ Synthesis of Polymer/Semiconductor Nanohybrid
Using Block Copolymers as Structural Template 17
2-6 Grignard Metathesis, GRIM 21
Chapter 3 Synthesis and Characterizations of
poly(2,5-dihexyloxy-p-phenylene)-
b- poly(3-hexylthiophene) Block Copolymers 24
3-1 Introduction 24
3-2 Experimental Section 25
3-2-1 Materials 25
3-2-2 Equipments 27
3-2-3 Synthesis of 2,5-dibromo-3-hexylthiophene 28
3-2-4 Synthesis of 1,4-dibromo-2,5-dihexyloxybenzene 29
3-2-5 Synthesis of PPP-P3HT block copolymers 32
3-2-6 1H Nuclear Magnetic Resonance (1H NMR 33
3-2-7 Gel Permeation Chromatography (GPC) 36
3-3 The fabrication of solar cell energy
(From professor L. Y. Wang LAB ) 44
3-4 conclusion 46
Chapter 4 Characterization in Blending system of block
copolymers PPP-b-P3HT and PCBM/ICBA in dilute
toluene/ODCB solvent 47
4-1 Introduction 47
4-2 Experimental Section 48
4-2-1 Materials 48
4-2-2 The sample preparations 48
4-2-3 Equipments 49
Gel Permeation Chromatography 49
Fourier Transfer Infrared Spectra Analysis 49
Transmission Electron Microscopy 49
UV-VIS Spectroscopic Analysis 50
Fluorescence Analysis 50
4-3 Results and Discussion 51
4-3-1 The FTIR Measurement spectrum 51
4-3-2 Morphology of PPP-P3HT blending PCBM/ICBA in dilute
toluene/ODCB solution 55
4-3-3 The UV-Vis and PL optical properties of PPP-P3HT
blending PCBM and ICBA system 64
4-3-4 The GIWAXS spectra of PPP-P3HT blending PCBM
and system 70
4-4 The fabrication of solar cell energy
(From professor L. Y. Wang LAB ) 75
4-5 Conclusion 77
Chapter 5 Characterization in Blending system of block copolymers PPP-b-P3HT/PCBM and P3HT/PCBM in dichlorobenzene solvent 78
5-1 Introduction 78
5-2 Experimental Section 79
5-2-1 Materials 79
5-2-2 The sample preparations 79
5-2-3 Equipments 80
5-3 Results and Discussion 82
5-3-1 The FTIR Measurement spectrum 82
5-3-2 Morphology of PPP-P3HT blending PCBM in ODCB solution 84
5-3-3 The UV-Vis and PL optical properties of PPP-P3HT blending PCBM system 92
5-3-4 The GIWAXS spectra of PPP-P3HT blending PCBM system 98
5-4 The fabrication of solar cell energy
(From professor L. Y. Wang LAB ) 103
5-5 Conclusion 105
Chapter 6 Reference 106
APPENDIX 114
dc.language.isoen
dc.subject格林那反應zh_TW
dc.subject碳六十衍生物PCBMzh_TW
dc.subjectICBAzh_TW
dc.subject高分子太陽能電池zh_TW
dc.subject導電高分子zh_TW
dc.subjectGrignard Metathesisen
dc.subjectPCBMen
dc.subjectICBAen
dc.subjectPolymer Solar Cellen
dc.subjectconducting polymersen
dc.title以格林鈉反應合成全共軛雙嵌段共聚高分子PPP-P3HT及與碳六十衍生物PCBM/ICBA混摻研究:混摻型態、光電性質與太陽能電池元件應用之探討zh_TW
dc.titleSynthesis of All-Conjugated Block Copolymers PPP-P3HT by Using Grignard Metathesis and Study of Copolymer Blending with C60 Derivatives PCBM/ICBA: Hybrid Morphology, Optoelectronic Property and Solar Cell Applicationen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王立義(Lee-Yih Wang),芮祥鵬,程耀毅,徐秀福(Hsiu-Fu Hsu)
dc.subject.keyword格林那反應,碳六十衍生物PCBM,ICBA,高分子太陽能電池,導電高分子,zh_TW
dc.subject.keywordGrignard Metathesis,PCBM,ICBA,Polymer Solar Cell,conducting polymers,en
dc.relation.page134
dc.rights.note有償授權
dc.date.accepted2012-07-26
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
9.58 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved