Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65314
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭振牟(Chen-Mou Cheng)
dc.contributor.authorKuan-Wei Chenen
dc.contributor.author陳冠瑋zh_TW
dc.date.accessioned2021-06-16T23:36:03Z-
dc.date.available2012-08-01
dc.date.copyright2012-08-01
dc.date.issued2012
dc.date.submitted2012-07-26
dc.identifier.citation[1] ISSAC ’02: Proceedings of the 2002 international symposium on Symbolic and algebraic computation, New York, NY, USA, 2002. ACM. 505020.
[2] Luk Bettale, Jean-Charles Faugere, and Ludovic Perret. Cryptanalysis of multi- variate and odd-characteristic hfe variants. In Catalano et al. [5], pages 441–458.
[3] Dan Boneh, editor. Advances in Cryptology - CRYPTO 2003, 23rd Annual International Cryptology Conference, Santa Barbara, California, USA, August 17-21, 2003, Proceedings, volume 2729 of Lecture Notes in Computer Science. Springer, 2003.
[4] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system. I. The user language. J. Symbolic Comput., 24(3-4):235–265, 1997. Computational algebra and number theory (London, 1993).
[5] Dario Catalano, Nelly Fazio, Rosario Gennaro, and Antonio Nicolosi, editors.
Public Key Cryptography - PKC 2011 - 14th International Conference on Prac- tice and Theory in Public Key Cryptography, Taormina, Italy, March 6-9, 2011. Proceedings, volume 6571 of Lecture Notes in Computer Science. Springer, 2011.
[6] Jean Charles Faugere. A new efficient algorithm for computing grobner bases without reduction to zero (f5). In Proceedings of the 2002 international sym- posium on Symbolic and algebraic computation, ISSAC ’02, pages 75–83, New York, NY, USA, 2002. ACM.
[7] Jean-Charles Faugere and Antoine Joux. Algebraic cryptanalysis of hidden field equation (hfe) cryptosystems using grobner bases. In Boneh [3], pages 44–60.
[8] Harriet J. Fell and Whitfield Diffie. Analysis of a public key approach based on polynomial substitution. In Advances in Cryptology, CRYPTO ’85, pages 340–349, London, UK, UK, 1986. Springer-Verlag.
[9] Shuhong Gao, Yinhua Guan, and Frank Volny. A new incremental algorithm for computing groebner bases. In Koepf [16], pages 13–19.
[10] Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.
[11] Guang Gong and Kishan Chand Gupta, editors. Progress in Cryptology - IN- DOCRYPT 2010 - 11th International Conference on Cryptology in India, Hy- derabad, India, December 12-15, 2010. Proceedings, volume 6498 of Lecture Notes in Computer Science. Springer, 2010.
[12] Hideki Imai and Tsutomu Matsumoto. Algebraic methods for constructing asymmetric cryptosystems. In Proceedings of the 3rd International Conference on Algebraic Algorithms and Error-Correcting Codes, AAECC-3, pages 108– 119, London, UK, UK, 1986. Springer-Verlag.
[13] Aviad Kipnis, Jacques Patarin, and Louis Goubin. Unbalanced oil and vinegar signature schemes. In IN ADVANCES IN CRYPTOLOGY - EUROCRYPT 1999, pages 206–222. Springer, 1999.
[14] Aviad Kipnis and Adi Shamir. Cryptanalysis of the oil and vinegar signature scheme. In Proceedings of CRYPTO’98, Springer, LNCS n o 1462, pages 257– 266. Springer Verlag, 1998.
[15] Aviad Kipnis and Adi Shamir. Cryptanalysis of the hfe public key cryptosystem by relinearization. In Proceedings of the 19th Annual International Cryptology Conference on Advances in Cryptology, CRYPTO ’99, pages 19–30, London, UK, UK, 1999. Springer-Verlag.
[16] Wolfram Koepf, editor. Symbolic and Algebraic Computation, International Symposium, ISSAC 2010, Munich, Germany, July 25-28, 2010, Proceedings. ACM, 2010.
[17] Jacques Patarin. Hidden fields equations (hfe) and isomorphisms of polyno- mials (ip): Two new families of asymmetric algorithms. In Proceedings of the 15th annual international conference on Theory and application of cryp- tographic techniques, EUROCRYPT’96, pages 33–48, Berlin, Heidelberg, 1996. Springer-Verlag.
[18] Albrecht Petzoldt, Stanislav Bulygin, and Johannes Buchmann. Cyclicrainbow - a multivariate signature scheme with a partially cyclic public key. In Gong and Gupta [11], pages 33–48.
[19] Albrecht Petzoldt, Stanislav Bulygin, and Johannes Buchmann. Linear recur- ring sequences for the uov key generation. In Catalano et al. [5], pages 335–350.
[20] Albrecht Petzoldt, Enrico Thomae, Stanislav Bulygin, and Christopher Wolf. Small public keys and fast verification for multivariate quadratic public key systems. In Proceedings of the 13th international conference on Cryptographic hardware and embedded systems, CHES’11, pages 475–490, Berlin, Heidelberg, 2011. Springer-Verlag.
[21] Peter W. Shor. Polynomial-time algorithms for prime factorization and dis- crete logarithms on a quantum computer. SIAM J. Comput., 26(5):1484–1509, October 1997.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65314-
dc.description.abstractShortening the public key of the Multivariate Public-Key Cryptographic(MPKC) schemes [20] is the most active issue in recent MPKC research. In this article we extend the results of PTBW11 [20] which is applied only to single field schemes, we show a method shortening the public key of embedded field transformation schemes like Hidden Field Equations(HFE) [17]. We also explain how the structure of central map restricts the short form of public key. This restriction only depends on the structure of central map so all MPKC schemes are affected. The affine map S can also participate in shortening the public key although the capacity and efficiency is not as well as central map because the resulting equations for solving S are not on-to in the big field. Unlike S, the affine map T gives a better result in the key shortening process. As a proof of concept, we propose a short public-key version of HFE- signature scheme and quantify the reduction in public key size in the end.en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:36:03Z (GMT). No. of bitstreams: 1
ntu-101-R99921051-1.pdf: 1460451 bytes, checksum: 8bdbcbd334d9467b5c321aa3ec17fd09 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents1 Introduction 1
1.1 Motivation................................. 1
1.2 Ourcontribution ............................. 2
1.3 Organization ............................... 2
2 Preliminaries 3
2.1 MQproblem ............................... 3
2.2 MPKC................................... 4
2.3 ShortpublickeyinUOVscheme .................... 5
2.3.1 OilandVinegarsignaturescheme................ 5
2.3.2 Short-keyUOV .......................... 6
2.4 HFE.................................... 7
3 Generate short public key 9
3.1 EmbeddedFieldtransformationinSandT . . . . . . . . . . . . . . 9
3.1.1 ThefieldtransformationmatrixMn............... 9
3.1.2 MnmodifiedS .......................... 10
3.2 Shortkeygeneratingprocess....................... 11
3.3 AffinemapS ............................... 12
3.4 AffinemapT ............................... 13
4 Restriction of short public key 15
4.1 Therestrictionoftheshortpublickey ................. 15 4.2 Atoyexample............................... 18
4.3 Fullkeygeneratingprocess........................ 19
5 About security 22
5.1 Securityofshort-UOV .......................... 22
5.2 Securityofshort-HFE .......................... 25
5.3 AttackingHFE .............................. 25
6 An example : Shorten the public key of HFE- 27
6.1 HFE-.................................... 27
6.2 ShortkeyHFE-.............................. 28
7 Conclusion 33
dc.language.isoen
dc.subject後量子密碼學zh_TW
dc.subject多變量公開金鑰密碼系統zh_TW
dc.subject隱藏體方程組密碼系統zh_TW
dc.subject非平衡油醋密碼系統zh_TW
dc.subject多變量二次方程組問題zh_TW
dc.subjectHFEen
dc.subjectPost-Quantumen
dc.subjectMultivariateen
dc.subjectMPKCen
dc.subjectMQ Problemen
dc.subjectUOVen
dc.title縮短嵌入體變換多變量公開金鑰密碼系統的金鑰長度zh_TW
dc.titleReducing the Key Size of MPKC with Embedded Field Transformationen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳君明,楊柏因
dc.subject.keyword後量子密碼學,多變量公開金鑰密碼系統,多變量二次方程組問題,非平衡油醋密碼系統,隱藏體方程組密碼系統,zh_TW
dc.subject.keywordPost-Quantum,Multivariate,MPKC,MQ Problem,UOV,HFE,en
dc.relation.page36
dc.rights.note有償授權
dc.date.accepted2012-07-26
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
1.43 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved