請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65273完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蘇慧敏(Hui-Min Su) | |
| dc.contributor.author | Hui-Feng Chen | en |
| dc.contributor.author | 陳鏏仹 | zh_TW |
| dc.date.accessioned | 2021-06-16T23:34:00Z | - |
| dc.date.available | 2017-09-19 | |
| dc.date.copyright | 2012-09-19 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-07-27 | |
| dc.identifier.citation | Abelson, J. L., Khan, S., Liberzon, I., & Young, E. A. (2007). HPA axis activity in patients with panic disorder: review and synthesis of four studies. Depress Anxiety, 24(1), 66-76.
Al, M. D., van Houwelingen, A. C., & Hornstra, G. (1997). Relation between birth order and the maternal and neonatal docosahexaenoic acid status. Eur J Clin Nutr, 51(8), 548-553. Al, M. D., van Houwelingen, A. C., Kester, A. D., Hasaart, T. H., de Jong, A. E., & Hornstra, G. (1995). Maternal essential fatty acid patterns during normal pregnancy and their relationship to the neonatal essential fatty acid status. Br J Nutr, 74(1), 55-68. Arborelius, L., Owens, M. J., Plotsky, P. M., & Nemeroff, C. B. (1999). The role of corticotropin-releasing factor in depression and anxiety disorders. J Endocrinol, 160(1), 1-12. Asher, I., Kaplan, B., Modai, I., Neri, A., Valevski, A., & Weizman, A. (1995). Mood and hormonal changes during late pregnancy and puerperium. Clin Exp Obstet Gynecol, 22(4), 321-325. Bale, T. L. (2005). Is mom too sensitive? Impact of maternal stress during gestation. Front Neuroendocrinol, 26(1), 41-49. Barker, D. J. (1998). In utero programming of chronic disease. Clin Sci (Lond), 95(2), 115-128. Belzung, C., Leguisquet, A. M., Barreau, S., Delion-Vancassel, S., Chalon, S., & Durand, G. (1998). Alpha-linolenic acid deficiency modifies distractibility but not anxiety and locomotion in rats during aging. J Nutr, 128(9), 1537-1542. Biggio, G., Concas, A., Corda, M. G., Giorgi, O., Sanna, E., & Serra, M. (1990). GABAergic and dopaminergic transmission in the rat cerebral cortex: effect of stress, anxiolytic and anxiogenic drugs. Pharmacol Ther, 48(2), 121-142. Birzniece, V., Backstrom, T., Johansson, I. M., Lindblad, C., Lundgren, P., Lofgren, M., et al. (2006). Neuroactive steroid effects on cognitive functions with a focus on the serotonin and GABA systems. Brain Res Rev, 51(2), 212-239. Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Can J Biochem Physiol, 37(8), 911-917. Bourre, J. M., Dumont, O. S., Piciotti, M. J., Pascal, G. A., & Durand, G. A. (1992). Dietary alpha-linolenic acid deficiency in adult rats for 7 months does not alter brain docosahexaenoic acid content, in contrast to liver, heart and testes. Biochim Biophys Acta, 1124(2), 119-122. Bourre, J. M., Francois, M., Youyou, A., Dumont, O., Piciotti, M., Pascal, G., et al. (1989). The effects of dietary alpha-linolenic acid on the composition of nerve membranes, enzymatic activity, amplitude of electrophysiological parameters, resistance to poisons and performance of learning tasks in rats. J Nutr, 119(12), 1880-1892. Bowers, G., Cullinan, W. E., & Herman, J. P. (1998). Region-specific regulation of glutamic acid decarboxylase (GAD) mRNA expression in central stress circuits. J Neurosci, 18(15), 5938-5947. Boyle, M. H., Miskovic, V., Van Lieshout, R., Duncan, L., Schmidt, L. A., Hoult, L., et al. (2011). Psychopathology in young adults born at extremely low birth weight. Psychol Med, 41(8), 1763-1774. Brenna, J. T., Salem, N., Jr., Sinclair, A. J., & Cunnane, S. C. (2009). alpha-Linolenic acid supplementation and conversion to n-3 long-chain polyunsaturated fatty acids in humans. Prostaglandins Leukot Essent Fatty Acids, 80(2-3), 85-91. Brunton, P. J., & Russell, J. A. (2008). The expectant brain: adapting for motherhood. Nat Rev Neurosci, 9(1), 11-25. Burdge, G. C., & Calder, P. C. (2005). Conversion of alpha-linolenic acid to longer-chain polyunsaturated fatty acids in human adults. Reprod Nutr Dev, 45(5), 581-597. Carlson, S. E. (2009). Docosahexaenoic acid supplementation in pregnancy and lactation. Am J Clin Nutr, 89(2), 678S-684S. Carlson, S. E., Werkman, S. H., Peeples, J. M., & Wilson, W. M. (1994). Long-chain fatty acids and early visual and cognitive development of preterm infants. Eur J Clin Nutr, 48 Suppl 2, S27-30. Carrie, I., Clement, M., de Javel, D., Frances, H., & Bourre, J. M. (2000). Phospholipid supplementation reverses behavioral and biochemical alterations induced by n-3 polyunsaturated fatty acid deficiency in mice. J Lipid Res, 41(3), 473-480. Chalon, S., Delion-Vancassel, S., Belzung, C., Guilloteau, D., Leguisquet, A. M., Besnard, J. C., et al. (1998). Dietary fish oil affects monoaminergic neurotransmission and behavior in rats. J Nutr, 128(12), 2512-2519. Chen, C., & Bazan, N. G. (2005). Lipid signaling: sleep, synaptic plasticity, and neuroprotection. Prostaglandins Other Lipid Mediat, 77(1-4), 65-76. Chen, F., Cham, J. L., & Badoer, E. (2010). High-fat feeding alters the cardiovascular role of the hypothalamic paraventricular nucleus. Am J Physiol Regul Integr Comp Physiol, 298(3), R799-807. Chung, W. L., Chen, J. J., & Su, H. M. (2008). Fish oil supplementation of control and (n-3) fatty acid-deficient male rats enhances reference and working memory performance and increases brain regional docosahexaenoic acid levels. J Nutr, 138(6), 1165-1171. Crawford, M. A. (1993). The role of essential fatty acids in neural development: implications for perinatal nutrition. Am J Clin Nutr, 57(5 Suppl), 703S-709S; discussion 709S-710S. Cullinan, W. E., Ziegler, D. R., & Herman, J. P. (2008). Functional role of local GABAergic influences on the HPA axis. Brain Struct Funct, 213(1-2), 63-72. Darnaudery, M., & Maccari, S. (2008). Epigenetic programming of the stress response in male and female rats by prenatal restraint stress. Brain Res Rev, 57(2), 571-585. Das, U. N. (2002). The lipids that matter from infant nutrition to insulin resistance. Prostaglandins Leukot Essent Fatty Acids, 67(1), 1-12. Das, U. N. (2006). Essential fatty acids: biochemistry, physiology and pathology. Biotechnol J, 1(4), 420-439. De Vriese, S. R., Christophe, A. B., & Maes, M. (2003). Lowered serum n-3 polyunsaturated fatty acid (PUFA) levels predict the occurrence of postpartum depression: further evidence that lowered n-PUFAs are related to major depression. Life Sci, 73(25), 3181-3187. de Weerth, C., & Buitelaar, J. K. (2005). Physiological stress reactivity in human pregnancy--a review. Neurosci Biobehav Rev, 29(2), 295-312. Decavel, C., & Van den Pol, A. N. (1990). GABA: a dominant neurotransmitter in the hypothalamus. J Comp Neurol, 302(4), 1019-1037. Dobbing, J., & Sands, J. (1979). Comparative aspects of the brain growth spurt. Early Hum Dev, 3(1), 79-83. Drugan, R. C., Morrow, A. L., Weizman, R., Weizman, A., Deutsch, S. I., Crawley, J. N., et al. (1989). Stress-induced behavioral depression in the rat is associated with a decrease in GABA receptor-mediated chloride ion flux and brain benzodiazepine receptor occupancy. Brain Res, 487(1), 45-51. Emsley, R., Myburgh, C., Oosthuizen, P., & van Rensburg, S. J. (2002). Randomized, placebo-controlled study of ethyl-eicosapentaenoic acid as supplemental treatment in schizophrenia. Am J Psychiatry, 159(9), 1596-1598. Etgen, A. M., Ansonoff, M. A., & Quesada, A. (2001). Mechanisms of ovarian steroid regulation of norepinephrine receptor-mediated signal transduction in the hypothalamus: implications for female reproductive physiology. Horm Behav, 40(2), 169-177. Fedorova, I., & Salem, N., Jr. (2006). Omega-3 fatty acids and rodent behavior. Prostaglandins Leukot Essent Fatty Acids, 75(4-5), 271-289. Frances, H., Monier, C., & Bourre, J. M. (1995). Effects of dietary alpha-linolenic acid deficiency on neuromuscular and cognitive functions in mice. Life Sci, 57(21), 1935-1947. Frasure-Smith, N., Lesperance, F., & Julien, P. (2004). Major depression is associated with lower omega-3 fatty acid levels in patients with recent acute coronary syndromes. Biol Psychiatry, 55(9), 891-896. Freeman, M. P., Hibbeln, J. R., Wisner, K. L., Davis, J. M., Mischoulon, D., Peet, M., et al. (2006). Omega-3 fatty acids: evidence basis for treatment and future research in psychiatry. J Clin Psychiatry, 67(12), 1954-1967. Georgieff, M. K. (2007). Nutrition and the developing brain: nutrient priorities and measurement. Am J Clin Nutr, 85(2), 614S-620S. Goel, N., & Bale, T. L. (2009). Examining the intersection of sex and stress in modelling neuropsychiatric disorders. J Neuroendocrinol, 21(4), 415-420. Grace, C. E., Kim, S. J., & Rogers, J. M. (2011). Maternal influences on epigenetic programming of the developing hypothalamic-pituitary-adrenal axis. Birth Defects Res A Clin Mol Teratol, 91(8), 797-805. Green, P., Glozman, S., Kamensky, B., & Yavin, E. (1999). Developmental changes in rat brain membrane lipids and fatty acids. The preferential prenatal accumulation of docosahexaenoic acid. J Lipid Res, 40(5), 960-966. Hamano, H., Nabekura, J., Nishikawa, M., & Ogawa, T. (1996). Docosahexaenoic acid reduces GABA response in substantia nigra neuron of rat. J Neurophysiol, 75(3), 1264-1270. Hellemans, K. G., Sliwowska, J. H., Verma, P., & Weinberg, J. Prenatal alcohol exposure: fetal programming and later life vulnerability to stress, depression and anxiety disorders. Neurosci Biobehav Rev, 34(6), 791-807. Hibbeln, J. R. (2002). Seafood consumption, the DHA content of mothers' milk and prevalence rates of postpartum depression: a cross-national, ecological analysis. J Affect Disord, 69(1-3), 15-29. Hibbeln, J. R., Bissette, G., Umhau, J. C., & George, D. T. (2004). Omega-3 status and cerebrospinal fluid corticotrophin releasing hormone in perpetrators of domestic violence. Biol Psychiatry, 56(11), 895-897. Hilakivi-Clarke, L., Cho, E., Cabanes, A., DeAssis, S., Olivo, S., Helferich, W., et al. (2002). Dietary modulation of pregnancy estrogen levels and breast cancer risk among female rat offspring. Clin Cancer Res, 8(11), 3601-3610. Hilakivi-Clarke, L., Clarke, R., Onojafe, I., Raygada, M., Cho, E., & Lippman, M. (1997). A maternal diet high in n - 6 polyunsaturated fats alters mammary gland development, puberty onset, and breast cancer risk among female rat offspring. Proc Natl Acad Sci U S A, 94(17), 9372-9377. Holman, R. T., Johnson, S. B., & Ogburn, P. L. (1991). Deficiency of essential fatty acids and membrane fluidity during pregnancy and lactation. Proc Natl Acad Sci U S A, 88(11), 4835-4839. Holsboer, F., Spengler, D., & Heuser, I. (1992). The role of corticotropin-releasing hormone in the pathogenesis of Cushing's disease, anorexia nervosa, alcoholism, affective disorders and dementia. Prog Brain Res, 93, 385-417. Innis, S. M. (1991). Essential fatty acids in growth and development. Prog Lipid Res, 30(1), 39-103. Jackson, A. A. (2005). Integrating the ideas of life course across cellular, individual, and population levels in cancer causation. J Nutr, 135(12 Suppl), 2927S-2933S. Jolley, S. N., Elmore, S., Barnard, K. E., & Carr, D. B. (2007). Dysregulation of the hypothalamic-pituitary-adrenal axis in postpartum depression. Biol Res Nurs, 8(3), 210-222. Kajantie, E. (2006). Fetal origins of stress-related adult disease. Ann N Y Acad Sci, 1083, 11-27. Kajantie, E. (2008). Early-life events. Effects on aging. Hormones (Athens), 7(2), 101-113. Kajantie, E., & Phillips, D. I. (2006). The effects of sex and hormonal status on the physiological response to acute psychosocial stress. Psychoneuroendocrinology, 31(2), 151-178. Kalueff, A. V., & Nutt, D. J. (2007). Role of GABA in anxiety and depression. Depress Anxiety, 24(7), 495-517. Kapoor, A., Petropoulos, S., & Matthews, S. G. (2008). Fetal programming of hypothalamic-pituitary-adrenal (HPA) axis function and behavior by synthetic glucocorticoids. Brain Res Rev, 57(2), 586-595. Kash, S. F., Johnson, R. S., Tecott, L. H., Noebels, J. L., Mayfield, R. D., Hanahan, D., et al. (1997). Epilepsy in mice deficient in the 65-kDa isoform of glutamic acid decarboxylase. Proc Natl Acad Sci U S A, 94(25), 14060-14065. Kash, S. F., Tecott, L. H., Hodge, C., & Baekkeskov, S. (1999). Increased anxiety and altered responses to anxiolytics in mice deficient in the 65-kDa isoform of glutamic acid decarboxylase. Proc Natl Acad Sci U S A, 96(4), 1698-1703. Kodas, E., Galineau, L., Bodard, S., Vancassel, S., Guilloteau, D., Besnard, J. C., et al. (2004). Serotoninergic neurotransmission is affected by n-3 polyunsaturated fatty acids in the rat. J Neurochem, 89(3), 695-702. Kodas, E., Vancassel, S., Lejeune, B., Guilloteau, D., & Chalon, S. (2002). Reversibility of n-3 fatty acid deficiency-induced changes in dopaminergic neurotransmission in rats: critical role of developmental stage. J Lipid Res, 43(8), 1209-1219. Lauritzen, L., Hansen, H. S., Jorgensen, M. H., & Michaelsen, K. F. (2001). The essentiality of long chain n-3 fatty acids in relation to development and function of the brain and retina. Prog Lipid Res, 40(1-2), 1-94. Levant, B., Ozias, M. K., & Carlson, S. E. (2006). Diet (n-3) polyunsaturated fatty acid content and parity interact to alter maternal rat brain phospholipid fatty acid composition. J Nutr, 136(8), 2236-2242. Levant, B., Ozias, M. K., & Carlson, S. E. (2007a). Diet (n-3) polyunsaturated fatty acid content and parity affect liver and erythrocyte phospholipid fatty acid composition in female rats. J Nutr, 137(11), 2425-2430. Levant, B., Ozias, M. K., & Carlson, S. E. (2007b). Specific brain regions of female rats are differentially depleted of docosahexaenoic acid by reproductive activity and an (n-3) fatty acid-deficient diet. J Nutr, 137(1), 130-134. Levant, B., Ozias, M. K., Davis, P. F., Winter, M., Russell, K. L., Carlson, S. E., et al. (2008). Decreased brain docosahexaenoic acid content produces neurobiological effects associated with depression: Interactions with reproductive status in female rats. Psychoneuroendocrinology, 33(9), 1279-1292. Levant, B., Radel, J. D., & Carlson, S. E. (2006). Reduced brain DHA content after a single reproductive cycle in female rats fed a diet deficient in N-3 polyunsaturated fatty acids. Biol Psychiatry, 60(9), 987-990. Mamalakis, G., Tornaritis, M., & Kafatos, A. (2002). Depression and adipose essential polyunsaturated fatty acids. Prostaglandins Leukot Essent Fatty Acids, 67(5), 311-318. Marszalek, J. R., & Lodish, H. F. (2005). Docosahexaenoic acid, fatty acid-interacting proteins, and neuronal function: breastmilk and fish are good for you. Annu Rev Cell Dev Biol, 21, 633-657. Martinez, M. (1992). Tissue levels of polyunsaturated fatty acids during early human development. J Pediatr, 120(4 Pt 2), S129-138. Mastorakos, G., & Ilias, I. (2000). Maternal hypothalamic-pituitary-adrenal axis in pregnancy and the postpartum period. Postpartum-related disorders. Ann N Y Acad Sci, 900, 95-106. Mastorakos, G., & Ilias, I. (2003). Maternal and fetal hypothalamic-pituitary-adrenal axes during pregnancy and postpartum. Ann N Y Acad Sci, 997, 136-149. Mathews, T. A., Fedele, D. E., Coppelli, F. M., Avila, A. M., Murphy, D. L., & Andrews, A. M. (2004). Gene dose-dependent alterations in extraneuronal serotonin but not dopamine in mice with reduced serotonin transporter expression. J Neurosci Methods, 140(1-2), 169-181. Matthews, S. G. (2001). Antenatal glucocorticoids and the developing brain: mechanisms of action. Semin Neonatol, 6(4), 309-317. McNamara, R. K., & Carlson, S. E. (2006). Role of omega-3 fatty acids in brain development and function: potential implications for the pathogenesis and prevention of psychopathology. Prostaglandins Leukot Essent Fatty Acids, 75(4-5), 329-349. Miklos, I. H., & Kovacs, K. J. (2002). GABAergic innervation of corticotropin-releasing hormone (CRH)-secreting parvocellular neurons and its plasticity as demonstrated by quantitative immunoelectron microscopy. Neuroscience, 113(3), 581-592. Moriguchi, T., Greiner, R. S., & Salem, N., Jr. (2000). Behavioral deficits associated with dietary induction of decreased brain docosahexaenoic acid concentration. J Neurochem, 75(6), 2563-2573. Moser, A. B., Jones, D. S., Raymond, G. V., & Moser, H. W. (1999). Plasma and red blood cell fatty acids in peroxisomal disorders. Neurochem Res, 24(2), 187-197. Moses-Kolko, E. L., Bogen, D., Perel, J., Bregar, A., Uhl, K., Levin, B., et al. (2005). Neonatal signs after late in utero exposure to serotonin reuptake inhibitors: literature review and implications for clinical applications. JAMA, 293(19), 2372-2383. Mueller, B. R., & Bale, T. L. (2008). Sex-specific programming of offspring emotionality after stress early in pregnancy. J Neurosci, 28(36), 9055-9065. Nakashima, Y., Yuasa, S., Hukamizu, Y., Okuyama, H., Ohhara, T., Kameyama, T., et al. (1993). Effect of a high linoleate and a high alpha-linolenate diet on general behavior and drug sensitivity in mice. J Lipid Res, 34(2), 239-247. Nielsen, M., Witt, M. R., & Thogersen, H. (1988). [3H]diazepam specific binding to rat cortex in vitro is enhanced by oleic, arachidonic and docosahexenoic acid isolated from pig brain. Eur J Pharmacol, 146(2-3), 349-353. Nieminen, L. R., Makino, K. K., Mehta, N., Virkkunen, M., Kim, H. Y., & Hibbeln, J. R. (2006). Relationship between omega-3 fatty acids and plasma neuroactive steroids in alcoholism, depression and controls. Prostaglandins Leukot Essent Fatty Acids, 75(4-5), 309-314. Nissen, E., Gustavsson, P., Widstrom, A. M., & Uvnas-Moberg, K. (1998). Oxytocin, prolactin, milk production and their relationship with personality traits in women after vaginal delivery or Cesarean section. J Psychosom Obstet Gynaecol, 19(1), 49-58. Olsen, S. F., Grandjean, P., Weihe, P., & Videro, T. (1993). Frequency of seafood intake in pregnancy as a determinant of birth weight: evidence for a dose dependent relationship. J Epidemiol Community Health, 47(6), 436-440. Olsen, S. F., Olsen, J., & Frische, G. (1990). Does fish consumption during pregnancy increase fetal growth? A study of the size of the newborn, placental weight and gestational age in relation to fish consumption during pregnancy. Int J Epidemiol, 19(4), 971-977. Otto, S. J., de Groot, R. H., & Hornstra, G. (2003). Increased risk of postpartum depressive symptoms is associated with slower normalization after pregnancy of the functional docosahexaenoic acid status. Prostaglandins Leukot Essent Fatty Acids, 69(4), 237-243. Otto, S. J., van Houwelingen, A. C., Badart-Smook, A., & Hornstra, G. (2001). Comparison of the peripartum and postpartum phospholipid polyunsaturated fatty acid profiles of lactating and nonlactating women. Am J Clin Nutr, 73(6), 1074-1079. Pandaranandaka, J., Poonyachoti, S., & Kalandakanond-Thongsong, S. (2006). Anxiolytic property of estrogen related to the changes of the monoamine levels in various brain regions of ovariectomized rats. Physiol Behav, 87(4), 828-835. Parker, G., Gibson, N. A., Brotchie, H., Heruc, G., Rees, A. M., & Hadzi-Pavlovic, D. (2006). Omega-3 fatty acids and mood disorders. Am J Psychiatry, 163(6), 969-978. Peet, M., Laugharne, J. D., Mellor, J., & Ramchand, C. N. (1996). Essential fatty acid deficiency in erythrocyte membranes from chronic schizophrenic patients, and the clinical effects of dietary supplementation. Prostaglandins Leukot Essent Fatty Acids, 55(1-2), 71-75. Proulx, K., Clavel, S., Nault, G., Richard, D., & Walker, C. D. (2001). High neonatal leptin exposure enhances brain GR expression and feedback efficacy on the adrenocortical axis of developing rats. Endocrinology, 142(11), 4607-4616. Ramakrishnan, U., Imhoff-Kunsch, B., & DiGirolamo, A. M. (2009). Role of docosahexaenoic acid in maternal and child mental health. Am J Clin Nutr, 89(3), 958S-962S. Raygada, M., Cho, E., & Hilakivi-Clarke, L. (1998). High maternal intake of polyunsaturated fatty acids during pregnancy in mice alters offsprings' aggressive behavior, immobility in the swim test, locomotor activity and brain protein kinase C activity. J Nutr, 128(12), 2505-2511. Rees, A. M., Austin, M. P., Owen, C., & Parker, G. (2009). Omega-3 deficiency associated with perinatal depression: case control study. Psychiatry Res, 166(2-3), 254-259. Ressler, K. J., & Nemeroff, C. B. (2000). Role of serotonergic and noradrenergic systems in the pathophysiology of depression and anxiety disorders. Depress Anxiety, 12 Suppl 1, 2-19. Reynolds, R. M., Walker, B. R., Syddall, H. E., Andrew, R., Wood, P. J., Whorwood, C. B., et al. (2001). Altered control of cortisol secretion in adult men with low birth weight and cardiovascular risk factors. J Clin Endocrinol Metab, 86(1), 245-250. Roland, B. L., & Sawchenko, P. E. (1993). Local origins of some GABAergic projections to the paraventricular and supraoptic nuclei of the hypothalamus in the rat. J Comp Neurol, 332(1), 123-143. Ross, L. E., & McLean, L. M. (2006). Anxiety disorders during pregnancy and the postpartum period: A systematic review. J Clin Psychiatry, 67(8), 1285-1298. Ryan, D., Milis, L., & Misri, N. (2005). Depression during pregnancy. Can Fam Physician, 51, 1087-1093. Salem, N., Jr., Litman, B., Kim, H. Y., & Gawrisch, K. (2001). Mechanisms of action of docosahexaenoic acid in the nervous system. Lipids, 36(9), 945-959. Sastry, P. S. (1985). Lipids of nervous tissue: composition and metabolism. Prog Lipid Res, 24(2), 69-176. Schmidt, L. A., Miskovic, V., Boyle, M., & Saigal, S. (2010). Frontal electroencephalogram asymmetry, salivary cortisol, and internalizing behavior problems in young adults who were born at extremely low birth weight. Child Dev, 81(1), 183-199. Shih, J. C., Chen, K., & Ridd, M. J. (1999). Role of MAO A and B in neurotransmitter metabolism and behavior. Pol J Pharmacol, 51(1), 25-29. Skilbeck, K. J., Johnston, G. A., & Hinton, T. (2010). Stress and GABA receptors. J Neurochem, 112(5), 1115-1130. Stark, K. D., Beblo, S., Murthy, M., Buda-Abela, M., Janisse, J., Rockett, H., et al. (2005). Comparison of bloodstream fatty acid composition from African-American women at gestation, delivery, and postpartum. J Lipid Res, 46(3), 516-525. Stuart, S., Couser, G., Schilder, K., O'Hara, M. W., & Gorman, L. (1998). Postpartum anxiety and depression: onset and comorbidity in a community sample. J Nerv Ment Dis, 186(7), 420-424. Su, H. M. (2010). Mechanisms of n-3 fatty acid-mediated development and maintenance of learning memory performance. J Nutr Biochem, 21(5), 364-373. Su, K. P., Huang, S. Y., Chiu, C. C., & Shen, W. W. (2003). Omega-3 fatty acids in major depressive disorder. A preliminary double-blind, placebo-controlled trial. Eur Neuropsychopharmacol, 13(4), 267-271. Su, K. P., Huang, S. Y., Chiu, T. H., Huang, K. C., Huang, C. L., Chang, H. C., et al. (2008). Omega-3 fatty acids for major depressive disorder during pregnancy: results from a randomized, double-blind, placebo-controlled trial. J Clin Psychiatry, 69(4), 644-651. Su, K. P., Shen, W. W., & Huang, S. Y. (2001). Omega-3 fatty acids as a psychotherapeutic agent for a pregnant schizophrenic patient. Eur Neuropsychopharmacol, 11(4), 295-299. Takeuchi, T., Iwanaga, M., & Harada, E. (2003). Possible regulatory mechanism of DHA-induced anti-stress reaction in rats. Brain Res, 964(1), 136-143. Tassoni, D., Kaur, G., Weisinger, R. S., & Sinclair, A. J. (2008). The role of eicosanoids in the brain. Asia Pac J Clin Nutr, 17 Suppl 1, 220-228. Treiman, D. M. (2001). GABAergic mechanisms in epilepsy. Epilepsia, 42 Suppl 3, 8-12. Vazquez, B., & Devinsky, O. (2003). Epilepsy and anxiety. Epilepsy Behav, 4 Suppl 4, S20-25. Walker, C. D. (2005). Nutritional aspects modulating brain development and the responses to stress in early neonatal life. Prog Neuropsychopharmacol Biol Psychiatry, 29(8), 1249-1263. Weisinger, H. S., Armitage, J. A., Sinclair, A. J., Vingrys, A. J., Burns, P. L., & Weisinger, R. S. (2001). Perinatal omega-3 fatty acid deficiency affects blood pressure later in life. Nat Med, 7(3), 258-259. Wenzel, A., Haugen, E. N., Jackson, L. C., & Brendle, J. R. (2005). Anxiety symptoms and disorders at eight weeks postpartum. J Anxiety Disord, 19(3), 295-311. Wurtman, R. J. (2008). Synapse formation and cognitive brain development: effect of docosahexaenoic acid and other dietary constituents. Metabolism, 57 Suppl 2, S6-10. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65273 | - |
| dc.description.abstract | 二十二碳六烯酸(Docosahexaenoic acid,簡稱DHA)是構成哺乳類動物神經細胞膜最主要的n - 3多元不飽和脂肪酸,為神經系統不可或缺之營養元素,並扮演許多重要的神經功能,如構成神經細胞膜,調節單胺類神經傳導物質,以及影響行為反應。在大腦發育時期,胎兒會經由胎盤及母乳中獲取DHA,大量的累積在神經細胞中。本研究旨要為探討「母體懷孕及泌乳期間,DHA對母親產後焦慮及子代下視丘-腦下垂體-腎上腺軸對壓力反應之影響」。
本研究首先欲探討「懷孕及泌乳期間胎兒是否會剝奪母體DHA,改變母體腦中DHA和其他脂肪酸組成,影響母體腦中血清胺代謝,而魚油補充是否可以減少母體腦中DHA流失及改善產後焦慮」。利用Sprague-Dawley懷孕母鼠,在懷孕及哺乳期間,餵食以葵花油為主的缺乏n-3不飽和脂肪酸飼料,並給予或不給予魚油補充,另外,將年齡相同的Sprague-Dawley母鼠餵食相同的飼料41天作為懷孕的對照組。結果顯示,在產後母鼠,其下視丘、海馬迴、額葉皮質、小腦、嗅球和視網膜DHA含量均顯著減少,腦幹、額葉皮質和海馬迴血清胺濃度下降,以及腦幹和額葉皮質血清胺代謝速率增加。在懷孕及哺乳期間給予魚油補充可以預防懷孕母鼠腦中的DHA流失,抑制腦幹單胺氧化酶MAO-A的活性,和減少十字迷宮類焦慮的行為表現。由以上的結果我們推論,懷孕生殖會消耗母體大腦DHA以及影響母體腦中血清胺代謝的調節,而魚油的補充可預防n-3脂肪酸缺乏飲食之母體腦中DHA的流失,以及改善產後焦慮行為。 第二部分的實驗則利用上述實驗母鼠的子代雄鼠,探討「大腦發育期間缺乏DHA對於雄性成鼠在遭遇壓力下所引發下視丘-腦下垂體-腎上腺軸(HPA axis)的活化機制與焦慮和憂鬱行為反應之影響」。利用Sprague-Dawley雄鼠,在大腦發育時期(胚胎至出生後第3週)或大腦發育趨於成熟後(出生後第三至第十週)餵食以葵花油為主的缺乏n-3不飽和脂肪酸飼料,控制組則給於魚油補充,作為含適量n-3不飽和脂肪酸組別,觀察十週大成鼠焦慮及憂鬱的行為反應,以及在遭遇壓力後血清中壓力荷爾蒙corticosterone和GABA合成酶glutamate decarboxylase(GAD 67)蛋白質的表現。另外,在動物麻醉的狀態下,直接注射GABA拮抗劑bicuculline methiodide至下視丘室旁核,觀察心跳、血壓和體溫等生理反應之變化。結果顯示,雄性子代成鼠在大腦發育期缺乏DHA顯著增加並延長約束壓力所引起的體溫變化及血清中皮質固醇的濃度上升,顯著增加GABAA受體拮抗劑所引起的心跳速率上升,以及增加十字迷宮測試中的類焦慮行為和強迫游泳行為測試的類憂慮行為反應。這些影響沒有在大腦發育成熟後餵食缺乏n-3不飽和脂肪酸飼料的成鼠中觀察到。由以上的結果我們認為,在大腦發育時期缺乏DHA會增加雄性子代成體後焦慮、憂鬱的行為表現,以及在遭受壓力下HPA axis的活性,期間可能經由影響GABA的合成或是調控GABAA受體,而影響GABA對HPA axis的抑制作用。 綜合以上研究結果顯示,DHA的缺乏是造成情感性疾病如焦慮、憂鬱的病因之一。在母體懷孕時缺乏n-3脂肪酸飲食下,魚油的補充能發揮其抗焦慮憂鬱的功效,有益於改善母體產後焦慮,及減少子代焦慮憂鬱之行為表現。期望此研究對於未來在情緒功能障礙的預防及治療能有所貢獻。 | zh_TW |
| dc.description.abstract | Docosahexaenoic acid (DHA, 22:6n-3), the major n-3 polyunsaturated fatty acids (PUFA), is specific enriched in the neuronal membrane. DHA plays an important role in neural function, such as the formation of neuronal membranes, modulation of monoamine neurotransmission, and even behavior changes. Most DHA accumulation rapidly in the brain occurs during brain development and is supplied via the placenta to the fetus and the breast-fed milk to the pup. The aims of this thesis were to examine the effects of DHA on maternal postpartum anxiety and adult offspring HPA axis responses to stress.
In Part I, the study was designed to examine whether maternal brain DHA levels were depleted during pregnancy and lactation due to meeting the high demand of the developing nervous system in the offspring, and whether fish oil supplementation of maternal rats on an n-3 fatty acids deficient diet prevented depletion of maternal brain regional DHA levels and altered serotonin metabolism and had a postpartum anxiolytic effect. Pregnant rats were fed during pregnancy and lactation with a sunflower oil-based n-3 PUFA-deficient diet with or without fish oil supplementation, and the age-matched virgin rats were fed the same diets for 41 days. In both sets of postpartum rats, decreased DHA levels compared to those in virgin females were seen in the hypothalamus, hippocampus, frontal cortex, cerebellum, olfactory bulb and retina. Serotonin levels were decreased and turnover increased in the brainstem and frontal cortex in postpartum rats compared to virgin rats. Fish oil supplementation during pregnancy and lactation prevented the decrease in maternal brain regional DHA levels, inhibited monoamine oxidase-A activity in the brainstem and decreased anxiety-like behavior. We propose that the reproductive cycle depletes maternal brain DHA levels and modulates maternal brain serotonin metabolism to cause postpartum anxiety and suggest that fish oil supplementation may be beneficial for postpartum anxiety in females on an n-3 PUFA deficient diet. In part Ⅱ, the study was designed to evaluate whether brain development was the critical period in which DHA deficiency leads to dysregulation of the HPA axis in response to stress later in life. Rats were exposed to an n-3 fatty acid-deficient diet or the same diet supplemented with fish oil as an n-3 fatty acid-adequate diet either during the per-weaning period from the embryo to weaning at 3 wk-old or during the post-weaning period from 3- to 10-wk-old. We found that DHA deficiency during the pre-weaning period significantly increased and prolonged restraint stress-induced colonic temperature changes and serum corticosterone levels, caused a significant increase in GABAA antagonist-induced heart rate changes and enhanced depression-like behavior in the forced-swimming test and anxiety-like behavior in the plus-maze test in later life. These effects were not seen in male rats fed the n-3 fatty acid-deficient diet during the post-weaning period. These results suggest that brain development is the critical period in which DHA deficiency leads to excessive HPA responses to stress and elevated behavioral indices of depression and anxiety in adulthood. We propose that these effects of hypothalamic DHA deficiency during brain development may involve a GABAA receptor-mediated mechanism. The above-listed observations reveal that lack of DHA is of aetiological importance in mental disorders. These results suggest that fish oil supplementation show anxiolytic and antidepressant effects, and may be beneficial for the prevention of the maternal and child mental health disorders on an n-3 fatty acid-deficient diet. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T23:34:00Z (GMT). No. of bitstreams: 1 ntu-101-D94441003-1.pdf: 2648231 bytes, checksum: 07d2ba986662f92b597be33780707e73 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | Content
中文摘要 ---------------------------------------1 Abstract --------------------------------------3 Overview --------------------------------------6 1.Dietary essential fatty acids and their metabolism------6 2.Fatty acids composition of cell membranes and eciosanoid signaling ----8 3.The role of DHA in brain development and function ------9 4.DHA and psychopathology -------------------------------12 5.Fatty acids aspect modulate hypothalamic-pituitary-adrenal (HPA) axis programming during development -------13 6.HPA axis and GABA regulation --------------------------15 Objective -----------------------------------------------17 Part Ⅰ:Fish oil supplementation of maternal rats on an n-3 fatty acid-deficient diet prevents depletion of maternal brain regional docosahexaenoic acid levels and has a postpartum anxiolytic effect 1.Summary -----------------------------------------------18 2.Introduction ------------------------------------------20 3.Materials and methods ---------------------------------21 4.Results -----------------------------------------------27 5.Discussion --------------------------------------------32 6.Tables ------------------------------------------------40 7.Figures -----------------------------------------------48 8.Supplemental tables -----------------------------------50 Part Ⅱ: Exposure to a maternal n-3 fatty acid-deficient diet during brain development provokes excessive hypothalamic-pituitary-adrenal axis responses to stress and behavioral indices of depression and anxiety in male rat offspring later in life 1.Summary -----------------------------------------------59 2.Introduction ------------------------------------------61 3.Materials and methods ---------------------------------63 4.Results -----------------------------------------------71 5.Discussion --------------------------------------------77 6.Tables ------------------------------------------------83 7.Figures -----------------------------------------------88 Conclusion ----------------------------------------------97 References ---------------------------------------------100 | |
| dc.language.iso | en | |
| dc.subject | 二十二碳六烯酸 | zh_TW |
| dc.subject | 憂慮 | zh_TW |
| dc.subject | 焦慮 | zh_TW |
| dc.subject | 下視丘-腦下垂體-腎上腺軸 | zh_TW |
| dc.subject | 大腦發育 | zh_TW |
| dc.subject | Docosahexaenoic acid | en |
| dc.subject | Brain development | en |
| dc.subject | HPA axis | en |
| dc.subject | Anxiety | en |
| dc.subject | Depression | en |
| dc.title | 二十二碳六烯酸對母體產後焦慮及雄性子代成鼠下視丘-腦下垂體-腎上腺軸對壓力反應之影響 | zh_TW |
| dc.title | Effects of docosahexaenoic acid on maternal postpartum anxiety and male adult offspring hypothalamic-pituitary-adrenal axis responses to stress | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 蔡元奮,梁庚辰,黃青真,黃怡萱,李立仁 | |
| dc.subject.keyword | 二十二碳六烯酸,大腦發育,下視丘-腦下垂體-腎上腺軸,焦慮,憂慮, | zh_TW |
| dc.subject.keyword | Docosahexaenoic acid,Brain development,HPA axis,Anxiety,Depression, | en |
| dc.relation.page | 109 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-07-27 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生理學研究所 | zh_TW |
| 顯示於系所單位: | 生理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 2.59 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
