Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65269
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭鐘金(Chung-Chin Kuo)
dc.contributor.authorChun-Chia Hsuen
dc.contributor.author許純嘉zh_TW
dc.date.accessioned2021-06-16T23:33:47Z-
dc.date.available2015-08-01
dc.date.copyright2012-09-19
dc.date.issued2012
dc.date.submitted2012-07-27
dc.identifier.citationAfsharpour S (1985) Light microscopic analysis of Golgi-impregnated rat subthalamic neurons. J Comp Neurol 236:1-13.
Armstrong CM (1966) Time course of TEA(+)-induced anomalous rectification in squid giant axons. J Gen Physiol 50:491-503.
Armstrong CM (1969) Inactivation of the potassium conductance and related phenomena caused by quaternary ammonium ion injection in squid axons. J Gen Physiol 54:553-575.
Armstrong CM (1971) Interaction of tetraethylammonium ion derivatives with the potassium channels of giant axons. J Gen Physiol 58:413-437.
Armstrong CM (1981) Sodium channels and gating currents. Physiol Rev 61:644-683.
Armstrong CM, Bezanilla F (1974) Charge movement associated with the opening and closing of the activation gates of the Na channels. J Gen Physiol 63:533-552.
Armstrong CM, Bezanilla F (1977) Inactivation of the sodium channel. II. Gating current experiments. J Gen Physiol 70:567-590.
Armstrong CM, Bezanilla F, Rojas E (1973) Destruction of sodium conductance inactivation in squid axons perfused with pronase. J Gen Physiol 62:375-391.
Backx PH, Yue DT, Lawrence JH, Marban E, Tomaselli GF (1992) Molecular localization of an ion-binding site within the pore of mammalian sodium channels. Science 257:248-251.
Bant JS, Raman IM (2010) Control of transient, resurgent, and persistent current by open-channel block by Na channel beta4 in cultured cerebellar granule neurons. Proc Natl Acad Sci U S A 107:12357-12362.
Bell CC, Grimm RJ (1969) Discharge properties of Purkinje cells recorded on single and double microelectrodes. J Neurophysiol 32:1044-1055.
Benabid AL (2003) Deep brain stimulation for Parkinson's disease. Curr Opin Neurobiol 13:696-706.
Benazzouz A, Gross C, Feger J, Boraud T, Bioulac B (1993) Reversal of rigidity and improvement in motor performance by subthalamic high-frequency stimulation in MPTP-treated monkeys. Eur J Neurosci 5:382-389.
Benitah JP, Chen Z, Balser JR, Tomaselli GF, Marban E (1999) Molecular dynamics of the sodium channel pore vary with gating: interactions between P-segment motions and inactivation. J Neurosci 19:1577-1585.
Bergman H, Wichmann T, DeLong MR (1990) Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science 249:1436-1438.
Beurrier C, Congar P, Bioulac B, Hammond C (1999) Subthalamic nucleus neurons switch from single-spike activity to burst-firing mode. J Neurosci 19:599-609.
Bevan MD, Wilson CJ, Bolam JP, Magill PJ (2000) Equilibrium potential of GABA(A) current and implications for rebound burst firing in rat subthalamic neurons in vitro. J Neurophysiol 83:3169-3172.
Bevan MD, Magill PJ, Hallworth NE, Bolam JP, Wilson CJ (2002) Regulation of the timing and pattern of action potential generation in rat subthalamic neurons in vitro by GABA-A IPSPs. J Neurophysiol 87:1348-1362.
Bowie D, Mayer ML (1995) Inward rectification of both AMPA and kainate subtype glutamate receptors generated by polyamine-mediated ion channel block. Neuron 15:453-462.
Cahalan MD, Almers W (1979) Block of sodium conductance and gating current in squid giant axons poisoned with quaternary strychnine. Biophys J 27:57-73.
Chang HT, Kita H, Kitai ST (1983) The fine structure of the rat subthalamic nucleus: an electron microscopic study. J Comp Neurol 221:113-123.
DeLong MR, Crutcher MD, Georgopoulos AP (1985) Primate globus pallidus and subthalamic nucleus: functional organization. J Neurophysiol 53:530-543.
Ding S, Horn R (2002) Tail end of the s6 segment: role in permeation in shaker potassium channels. J Gen Physiol 120:87-97.
Ding S, Horn R (2003) Effect of S6 tail mutations on charge movement in Shaker potassium channels. Biophys J 84:295-305.
Do MT, Bean BP (2003) Subthreshold sodium currents and pacemaking of subthalamic neurons: modulation by slow inactivation. Neuron 39:109-120.
Do MT, Bean BP (2004) Sodium currents in subthalamic nucleus neurons from Nav1.6-null mice. J Neurophysiol 92:726-733.
Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69-77.
Eaholtz G, Scheuer T, Catterall WA (1994) Restoration of inactivation and block of open sodium channels by an inactivation gate peptide. Neuron 12:1041-1048.
Eaholtz G, Zagotta WN, Catterall WA (1998) Kinetic analysis of block of open sodium channels by a peptide containing the isoleucine, phenylalanine, and methionine (IFM) motif from the inactivation gate. J Gen Physiol 111:75-82.
Feger J, Hassani OK, Mouroux M (1997) The subthalamic nucleus and its connections. New electrophysiological and pharmacological data. Adv Neurol 74:31-43.
Francois C, Savy C, Jan C, Tande D, Hirsch EC, Yelnik J (2000) Dopaminergic innervation of the subthalamic nucleus in the normal state, in MPTP-treated monkeys, and in Parkinson's disease patients. J Comp Neurol 425:121-129.
Goldin AL, Snutch T, Lubbert H, Dowsett A, Marshall J, Auld V, Downey W, Fritz LC, Lester HA, Dunn R, et al. (1986) Messenger RNA coding for only the alpha subunit of the rat brain Na channel is sufficient for expression of functional channels in Xenopus oocytes. Proc Natl Acad Sci U S A 83:7503-7507.
Grieco TM, Raman IM (2004) Production of resurgent current in NaV1.6-null Purkinje neurons by slowing sodium channel inactivation with beta-pompilidotoxin. J Neurosci 24:35-42.
Grieco TM, Afshari FS, Raman IM (2002) A role for phosphorylation in the maintenance of resurgent sodium current in cerebellar purkinje neurons. J Neurosci 22:3100-3107.
Grieco TM, Malhotra JD, Chen C, Isom LL, Raman IM (2005) Open-channel block by the cytoplasmic tail of sodium channel beta4 as a mechanism for resurgent sodium current. Neuron 45:233-244.
Haghighi AP, Cooper E (1998) Neuronal nicotinic acetylcholine receptors are blocked by intracellular spermine in a voltage-dependent manner. J Neurosci 18:4050-4062.
Heinemann SH, Terlau H, Stuhmer W, Imoto K, Numa S (1992) Calcium channel characteristics conferred on the sodium channel by single mutations. Nature 356:441-443.
Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500-544.
Huang CJ, Moczydlowski E (2001) Cytoplasmic polyamines as permeant blockers and modulators of the voltage-gated sodium channel. Biophys J 80:1262-1279.
Huth T, Rittger A, Saftig P, Alzheimer C (2011) beta-Site APP-cleaving enzyme 1 (BACE1) cleaves cerebellar Na+ channel beta4-subunit and promotes Purkinje cell firing by slowing the decay of resurgent Na+ current. Pflugers Archiv : European journal of physiology 461:355-371.
Isom LL, Scheuer T, Brownstein AB, Ragsdale DS, Murphy BJ, Catterall WA (1995a) Functional co-expression of the beta 1 and type IIA alpha subunits of sodium channels in a mammalian cell line. The Journal of biological chemistry 270:3306-3312.
Isom LL, Ragsdale DS, De Jongh KS, Westenbroek RE, Reber BF, Scheuer T, Catterall WA (1995b) Structure and function of the beta 2 subunit of brain sodium channels, a transmembrane glycoprotein with a CAM motif. Cell 83:433-442.
Isom LL, De Jongh KS, Patton DE, Reber BF, Offord J, Charbonneau H, Walsh K, Goldin AL, Catterall WA (1992) Primary structure and functional expression of the beta 1 subunit of the rat brain sodium channel. Science 256:839-842.
Jiang Y, Lee A, Chen J, Cadene M, Chait BT, MacKinnon R (2002) Crystal structure and mechanism of a calcium-gated potassium channel. Nature 417:515-522.
Jiang Y, Lee A, Chen J, Ruta V, Cadene M, Chait BT, MacKinnon R (2003) X-ray structure of a voltage-dependent K+ channel. Nature 423:33-41.
Kellenberger S, Scheuer T, Catterall WA (1996) Movement of the Na+ channel inactivation gate during inactivation. The Journal of biological chemistry 271:30971-30979.
Khaliq ZM, Gouwens NW, Raman IM (2003) The contribution of resurgent sodium current to high-frequency firing in Purkinje neurons: an experimental and modeling study. J Neurosci 23:4899-4912.
Kinoshita E, Maejima H, Yamaoka K, Konno K, Kawai N, Shimizu E, Yokote S, Nakayama H, Seyama I (2001) Novel wasp toxin discriminates between neuronal and cardiac sodium channels. Mol Pharmacol 59:1457-1463.
Konno K, Hisada M, Itagaki Y, Naoki H, Kawai N, Miwa A, Yasuhara T, Takayama H (1998) Isolation and structure of pompilidotoxins, novel peptide neurotoxins in solitary wasp venoms. Biochemical and biophysical research communications 250:612-616.
Kuo CC, Bean BP (1994) Na+ channels must deactivate to recover from inactivation. Neuron 12:819-829.
Lampert A, O'Reilly AO, Dib-Hajj SD, Tyrrell L, Wallace BA, Waxman SG (2008) A pore-blocking hydrophobic motif at the cytoplasmic aperture of the closed-state Nav1.7 channel is disrupted by the erythromelalgia-associated F1449V mutation. The Journal of biological chemistry 283:24118-24127.
Latham A, Paul DH (1971) Spontaneous activity of cerebellar Purkinje cells and their responses to impulses in climbing fibres. J Physiol 213:135-156.
Levesque JC, Parent A (2005) GABAergic interneurons in human subthalamic nucleus. Mov Disord 20:574-584.
Levy R, Dostrovsky JO, Lang AE, Sime E, Hutchison WD, Lozano AM (2001) Effects of apomorphine on subthalamic nucleus and globus pallidus internus neurons in patients with Parkinson's disease. J Neurophysiol 86:249-260.
Levy R, Ashby P, Hutchison WD, Lang AE, Lozano AM, Dostrovsky JO (2002) Dependence of subthalamic nucleus oscillations on movement and dopamine in Parkinson's disease. Brain 125:1196-1209.
Liman ER, Hess P, Weaver F, Koren G (1991) Voltage-sensing residues in the S4 region of a mammalian K+ channel. Nature 353:752-756.
Limousin P, Krack P, Pollak P, Benazzouz A, Ardouin C, Hoffmann D, Benabid AL (1998) Electrical stimulation of the subthalamic nucleus in advanced Parkinson's disease. The New England journal of medicine 339:1105-1111.
Limousin P, Pollak P, Benazzouz A, Hoffmann D, Le Bas JF, Broussolle E, Perret JE, Benabid AL (1995) Effect of parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation. Lancet 345:91-95.
Logothetis DE, Movahedi S, Satler C, Lindpaintner K, Nadal-Ginard B (1992) Incremental reductions of positive charge within the S4 region of a voltage-gated K+ channel result in corresponding decreases in gating charge. Neuron 8:531-540.
Lopatin AN, Makhina EN, Nichols CG (1994) Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification. Nature 372:366-369.
Lopatin AN, Makhina EN, Nichols CG (1995) The mechanism of inward rectification of potassium channels: 'long-pore plugging' by cytoplasmic polyamines. J Gen Physiol 106:923-955.
Marchand R (1987) Histogenesis of the subthalamic nucleus. Neuroscience 21:183-195.
McCollum IJ, Vilin YY, Spackman E, Fujimoto E, Ruben PC (2003) Negatively charged residues adjacent to IFM motif in the DIII-DIV linker of hNa(V)1.4 differentially affect slow inactivation. FEBS Lett 552:163-169.
McPhee JC, Ragsdale DS, Scheuer T, Catterall WA (1994) A mutation in segment IVS6 disrupts fast inactivation of sodium channels. Proc Natl Acad Sci U S A 91:12346-12350.
McPhee JC, Ragsdale DS, Scheuer T, Catterall WA (1995) A critical role for transmembrane segment IVS6 of the sodium channel alpha subunit in fast inactivation. The Journal of biological chemistry 270:12025-12034.
McPhee JC, Ragsdale DS, Scheuer T, Catterall WA (1998) A critical role for the S4-S5 intracellular loop in domain IV of the sodium channel alpha-subunit in fast inactivation. The Journal of biological chemistry 273:1121-1129.
Nambu A, Tokuno H, Takada M (2002) Functional significance of the cortico-subthalamo-pallidal 'hyperdirect' pathway. Neurosci Res 43:111-117.
Nambu A, Tokuno H, Hamada I, Kita H, Imanishi M, Akazawa T, Ikeuchi Y, Hasegawa N (2000) Excitatory cortical inputs to pallidal neurons via the subthalamic nucleus in the monkey. J Neurophysiol 84:289-300.
Noda M, Ikeda T, Kayano T, Suzuki H, Takeshima H, Kurasaki M, Takahashi H, Numa S (1986) Existence of distinct sodium channel messenger RNAs in rat brain. Nature 320:188-192.
Noda M, Shimizu S, Tanabe T, Takai T, Kayano T, Ikeda T, Takahashi H, Nakayama H, Kanaoka Y, Minamino N, et al. (1984) Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature 312:121-127.
Nuss HB, Balser JR, Orias DW, Lawrence JH, Tomaselli GF, Marban E (1996) Coupling between fast and slow inactivation revealed by analysis of a point mutation (F1304Q) in mu 1 rat skeletal muscle sodium channels. J Physiol 494 ( Pt 2):411-429.
Ogata N, Ohishi Y (2002) Molecular diversity of structure and function of the voltage-gated Na+ channels. Japanese journal of pharmacology 88:365-377.
O'Reilly JP, Wang SY, Wang GK (2000) A point mutation in domain 4-segment 6 of the skeletal muscle sodium channel produces an atypical inactivation state. Biophys J 78:773-784.
O'Reilly JP, Wang SY, Wang GK (2001) Residue-specific effects on slow inactivation at V787 in D2-S6 of Na(v)1.4 sodium channels. Biophys J 81:2100-2111.
Pan F, Beam KG (1999) The absence of resurgent sodium current in mouse spinal neurons. Brain Res 849:162-168.
Papazian DM, Timpe LC, Jan YN, Jan LY (1991) Alteration of voltage-dependence of Shaker potassium channel by mutations in the S4 sequence. Nature 349:305-310.
Papazian DM, Shao XM, Seoh SA, Mock AF, Huang Y, Wainstock DH (1995) Electrostatic interactions of S4 voltage sensor in Shaker K+ channel. Neuron 14:1293-1301.
Parent A, Hazrati LN (1995) Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidum in basal ganglia circuitry. Brain Res Brain Res Rev 20:128-154.
Raman IM, Bean BP (1997) Resurgent sodium current and action potential formation in dissociated cerebellar Purkinje neurons. J Neurosci 17:4517-4526.
Raman IM, Bean BP (1999) Ionic currents underlying spontaneous action potentials in isolated cerebellar Purkinje neurons. J Neurosci 19:1663-1674.
Raman IM, Bean BP (2001) Inactivation and recovery of sodium currents in cerebellar Purkinje neurons: evidence for two mechanisms. Biophys J 80:729-737.
Raman IM, Gustafson AE, Padgett D (2000) Ionic currents and spontaneous firing in neurons isolated from the cerebellar nuclei. J Neurosci 20:9004-9016.
Raman IM, Sprunger LK, Meisler MH, Bean BP (1997) Altered subthreshold sodium currents and disrupted firing patterns in Purkinje neurons of Scn8a mutant mice. Neuron 19:881-891.
Rohl CA, Boeckman FA, Baker C, Scheuer T, Catterall WA, Klevit RE (1999) Solution structure of the sodium channel inactivation gate. Biochemistry 38:855-861.
Scheuer T, Auld VJ, Boyd S, Offord J, Dunn R, Catterall WA (1990) Functional properties of rat brain sodium channels expressed in a somatic cell line. Science 247:854-858.
Seoh SA, Sigg D, Papazian DM, Bezanilla F (1996) Voltage-sensing residues in the S2 and S4 segments of the Shaker K+ channel. Neuron 16:1159-1167.
Smith-Maxwell CJ, Ledwell JL, Aldrich RW (1998) Uncharged S4 residues and cooperativity in voltage-dependent potassium channel activation. J Gen Physiol 111:421-439.
Smith MR, Goldin AL (1997) Interaction between the sodium channel inactivation linker and domain III S4-S5. Biophys J 73:1885-1895.
Song WJ, Baba Y, Otsuka T, Murakami F (2000) Characterization of Ca(2+) channels in rat subthalamic nucleus neurons. J Neurophysiol 84:2630-2637.
Stuhmer W, Conti F, Suzuki H, Wang XD, Noda M, Yahagi N, Kubo H, Numa S (1989) Structural parts involved in activation and inactivation of the sodium channel. Nature 339:597-603.
Terlau H, Heinemann SH, Stuhmer W, Pusch M, Conti F, Imoto K, Numa S (1991) Mapping the site of block by tetrodotoxin and saxitoxin of sodium channel II. FEBS Lett 293:93-96.
Tiwari-Woodruff SK, Schulteis CT, Mock AF, Papazian DM (1997) Electrostatic interactions between transmembrane segments mediate folding of Shaker K+ channel subunits. Biophys J 72:1489-1500.
Tiwari-Woodruff SK, Lin MA, Schulteis CT, Papazian DM (2000) Voltage-dependent structural interactions in the Shaker K(+) channel. J Gen Physiol 115:123-138.
Vassilev PM, Scheuer T, Catterall WA (1988) Identification of an intracellular peptide segment involved in sodium channel inactivation. Science 241:1658-1661.
Vedantham V, Cannon SC (2000) Rapid and slow voltage-dependent conformational changes in segment IVS6 of voltage-gated Na(+) channels. Biophys J 78:2943-2958.
Vila M, Perier C, Feger J, Yelnik J, Faucheux B, Ruberg M, Raisman-Vozari R, Agid Y, Hirsch EC (2000) Evolution of changes in neuronal activity in the subthalamic nucleus of rats with unilateral lesion of the substantia nigra assessed by metabolic and electrophysiological measurements. Eur J Neurosci 12:337-344.
Vilin YY, Fujimoto E, Ruben PC (2001) A single residue differentiates between human cardiac and skeletal muscle Na+ channel slow inactivation. Biophys J 80:2221-2230.
West JW, Patton DE, Scheuer T, Wang Y, Goldin AL, Catterall WA (1992a) A cluster of hydrophobic amino acid residues required for fast Na(+)-channel inactivation. Proc Natl Acad Sci U S A 89:10910-10914.
West JW, Scheuer T, Maechler L, Catterall WA (1992b) Efficient expression of rat brain type IIA Na+ channel alpha subunits in a somatic cell line. Neuron 8:59-70.
Wichmann T, Bergman H, DeLong MR (1994a) The primate subthalamic nucleus. I. Functional properties in intact animals. J Neurophysiol 72:494-506.
Wichmann T, Bergman H, DeLong MR (1994b) The primate subthalamic nucleus. III. Changes in motor behavior and neuronal activity in the internal pallidum induced by subthalamic inactivation in the MPTP model of parkinsonism. J Neurophysiol 72:521-530.
Yang YC, Lee CH, Kuo CC (2010) Ionic flow enhances low-affinity binding: a revised mechanistic view into Mg2+ block of NMDA receptors. J Physiol 588:633-650.
Yeh JZ, Narahashi T (1977) Kinetic analysis of pancuronium interaction with sodium channels in squid axon membranes. J Gen Physiol 69:293-323.
Yelnik J, Percheron G (1979) Subthalamic neurons in primates: a quantitative and comparative analysis. Neuroscience 4:1717-1743.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65269-
dc.description.abstract中樞神經系統的電氣活動掌控了人的知覺處理、思考記憶以及運動行為等功能,而這些電氣活動的發生基礎則是神經細胞上各種離子通道的活性表現。視丘下核是大腦皮質-基底核迴路系統中的一個重要樞紐,該核區細胞的放電模式會影響運動行為的調控。視丘下核神經細胞上的鈉離子通道被發現具有產生回返性鈉離子電流的特性,然而為何鈉離子通道能產生回返性鈉離子電流,雖然過去已有學者提出假說,但回返性鈉離子電流的諸多生物物理性質無法被該假說解釋完備。本實驗以離體的視丘下核神經元為材料,以全細胞電壓箝制技術進行實驗,利用結構單純明確之物質:四烷基銨類離子、精胺、以及鎂離子等作為分子探針,觀察細胞內加入上述這些物質後對於回返性鈉離子電流的影響,藉此探討視丘下核細胞鈉離子通道產生回返性鈉離子電流的可能分子機制。實驗結果顯示,於細胞內加入0.1毫莫耳之四烷基銨類離子後,會對回返性鈉離子電流造成不同程度的抑制。其中四戊基銨離子與四丁基銨離子的效果最強,回返性鈉離子電流可被完全抑制,然而暫時性鈉離子電流則僅受到部分或較微小之抑制;而四己基銨離子則可抑制一部份之回返性鈉離子電流;其他如四乙基、四丙基與四庚基銨離子則幾乎不影響回返性鈉離子電流之大小。至於精胺,實驗結果發現當視丘下核細胞內加入1毫莫耳之精胺後,會稍影響回返性鈉離子電流之大小,但未達統計上之顯著,其生理意義也需要進一步釐清。最後,針對鎂離子的實驗,改變視丘下核細胞內之鎂離子濃度,並不影響回返性鈉離子電流的大小與其基本性質。這些結果顯示,回返性鈉離子電流應係由一不同於短暫性鈉離子電流之開啟態通道所造成。zh_TW
dc.description.abstractThe electrical activities in the central nervous system constitute the bases of perceptual processing, motor behavior, thinking and memory. The subthalamic nucleus (STN) is an important hub in the cortico-basal ganglia circuit. The firing pattern of STN neurons may be shifted between the tonic and the burst mode. It has been demonstrated that the voltage-gated sodium channels in STN neurons would give rise to a resurgent current during the repolarization phase following a depolarization period. The molecular mechanism underlying the genesis of resurgent currents, however, is not fully clear. We performed whole-cell voltage clamp in dissociated rat STN neurons. Cations with simple and defined structures such as tetra-alkylammoniums, spermine, and Mg2+ ions were used to probe the molecular events responsible for the resurgent currents. We found that the resurgent currents are completely abolished but the transient currents are relatively unaffected when 0.1 mM of tetrabutylammonium (TBuA) or tetrapentylammonium (TPenA) was introduced into the STN neuron. On the other hand, 0.1 mM tetrahexylammonium (THexA) could only partly inhibit the resurgent currents. 0.1 mM tetraethylammonium (TEA), tetrapropylammonium (TPrA), or tetraheptylammonium (THepA) had no discernible inhibitory effect on resurgent currents. Finally, the resurgent currents were not significantly influenced by intracellular spermine or Mg2+. These results indicate that the resurgent sodium current should be ascribable to an open channel state distinct from that responsible for the transient sodium current.en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:33:47Z (GMT). No. of bitstreams: 1
ntu-101-R99441011-1.pdf: 1616435 bytes, checksum: 5b3e5321acff84f1b62de41751b80430 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員會審定書………………………………………………… I
序…………………………………………………………………… II
中文摘要…………………………………………………………… III
英文摘要…………………………………………………………… IV
目錄………………………………………………………………… V
第一章 導論……………………………………………………… 1
第二章 材料與方法……………………………………………… 15
第三章 實驗結果………………………………………………… 21
第四章 討論……………………………………………………… 29
圖表………………………………………………………………… 35
參考文獻…………………………………………………………… 52
dc.language.isozh-TW
dc.subject四烷基銨類離子zh_TW
dc.subject不活化反應zh_TW
dc.subject回返性鈉離子電流zh_TW
dc.subject鈉離子通道zh_TW
dc.subject視丘下核zh_TW
dc.subjectsubthalamic nucleusen
dc.subjecttetra-alkylammonium ionsen
dc.subjectinactivationen
dc.subjectresurgent sodium currenten
dc.subjectsodium channelen
dc.title四烷基銨離子對視丘下核神經元回返性鈉離子電流之抑制作用zh_TW
dc.titleThe Inhibitory Effects of Tetra-alkylammonium Ions on Resurgent Sodium Currents in Subthalamic Neuronsen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee湯志永(Chih-Yung Tang),黃榮棋(Rong-Chi Huang),楊雅晴(Ya-Chin Yang)
dc.subject.keyword視丘下核,鈉離子通道,回返性鈉離子電流,不活化反應,四烷基銨類離子,zh_TW
dc.subject.keywordsubthalamic nucleus,sodium channel,resurgent sodium current,inactivation,tetra-alkylammonium ions,en
dc.relation.page62
dc.rights.note有償授權
dc.date.accepted2012-07-27
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生理學研究所zh_TW
顯示於系所單位:生理學科所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
1.58 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved