Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65246
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐治平
dc.contributor.authorChih-Yuan Linen
dc.contributor.author林志原zh_TW
dc.date.accessioned2021-06-16T23:32:29Z-
dc.date.available2012-11-30
dc.date.copyright2012-08-01
dc.date.issued2012
dc.date.submitted2012-07-27
dc.identifier.citation1. J. L. Viovy, Rev. Mod. Phys., 2000, 72, 813-872.
2. A. V. Dobrynin and M. Rubinstein, Prog. Polym. Sci., 2005, 30, 1049-1118.
3. L. H. Yeh and J. P. Hsu, Soft Matter, 2011, 7, 396-411.
4. L. H. Yeh, K. L. Liu and J. P. Hsu, J. Phys. Chem. C, 2012, 116, 367-373.
5. J. F. L. Duval and F. Gaboriaud, Curr. Opin. Colloid Interface Sci., 2010, 15, 184-195.
6. L. H. Yeh, M. K. Zhang, S. Z. Qian and J. P. Hsu, Nanoscale, 2012, 4, 2685-2693.
7. M. K. Zhang, L. H. Yeh, S. Qian, J. P. Hsu and S. W. Joo, J. Phys. Chem. C, 2012, 116, 4793-4801.
8. S. L. Levy and H. G. Craighead, Chem. Soc. Rev., 2010, 39, 1133-1152.
9. K. D. Dorfman, Rev. Mod. Phys., 2010, 82, 2903-2947.
10. Y. Ai, J. Liu, B. K. Zhang and S. Qian, Anal. Chem., 2010, 82, 8217-8225.
11. Y. J. Kang and D. Q. Li, Microfluid. Nanofluid., 2009, 6, 431-460.
12. J. P. Hsu, Y. H. Tai, L. H. Yeh and S. J. Tseng, Langmuir, 2011, 28, 1013-1019.
13. M. K. Zhang, L. H. Yeh, S. Z. Qian, J. P. Hsu and S. W. Joo, J. Phys. Chem. C, 2012, 116, 4793-4801.
14. L. H. Yeh, S. Xue, S. W. Joo, S. Qian and J. P. Hsu, J. Phys. Chem. C, 2012, 116, 4209-4216.
15. S. W. Kowalczyk, A. R. Hall and C. Dekker, Nano. Lett., 2010, 10, 324-328.
16. S. Howorka and Z. Siwy, Chem. Soc. Rev., 2009, 38, 2360-2384.
17. J. Shendure and H. L. Ji, Nat. Biotechnol., 2008, 26, 1135-1145.
18. C. Dekker, Nat. Nanotechnol., 2007, 2, 209-215.
19. C. Heller, Electrophoresis, 2001, 22, 629-643.
20. S. K. Tripathy, J. Kumar and H. S. Nalwa, Handbook of Polyelectrolytes and Their Applications, American Scientific Publishers, Los Angeles, 2002.
21. F. Oosawa, Polyelectrolytes, Marcel Dekker, New York, 1971.
22. L. H. Yeh, J. P. Hsu, S. Qian, and S. Tseng, Electrochem. Commun., 2012, 19, 97-100.
23. G. S. Manning, J. Chem. Phys., 1969, 51, 924-933.
24. G. S. Manning, J. Phys. Chem., 1981, 85, 1506-1515.
25. G. S. Manning, J. Phys. Chem. B, 2007, 111, 8554-8559.
26. F. Oosawa, Biopolymers, 1970, 9, 677-688.
27. H. P. Hsu and E. Lee, Electrochem. Commun., 2012, 15, 59-62.
28. V. B. Teif and K. Bohinc, Prog. Biophys. Mol. Bio., 2011, 105, 208-222.
29. G. S. Manning, Biophys. Chem., 2002, 101, 461-473.
30. K. Wagner, D. Harries, S. May, V. Kahl, J. O. Radler and A. Ben-Shaul, Langmuir, 2000, 16, 303-306.
31. S. J. Chen, Annu. Rev. Biophys., 2008, 37, 197-214.
32. D. E. Draper, D. Grilley and A. M. Soto, Annu. Rev. Bioph. Biom., 2005, 34, 221-243.
33. D. Stigter, Biophys. J., 1995, 69, 380-388.
34. Q. R. Huang, P. L. Dubin, C. N. Moorefield and G. R. Newkome, J. Phys. Chem. B, 2000, 104, 898-904.
35. M. Muthukumar, J. Chem. Phys., 2004, 120, 9343-9350.
36. B. O'Shaughnessy and Q. Yang, Phys. Rev. Lett., 2005, 94, 048302.
37. U. Bohme and U. Scheler, Adv. Colloid Interface Sci., 2010, 158, 63-67.
38. R. W. O’Brien and L. R. White, J. Chem. Soc. Faraday Trans. 2, 1978, 74, 1607-1626.
39. S. Z. Qian, S. W. Joo, W. S. Hou and X. X. Zhao, Langmuir, 2008, 24, 5332-5340.
40. Y. Ai and S. Z. Qian, Phys. Chem. Chem. Phys., 2011, 13, 4060-4071.
41. J. J. Hermans and H. Fujita, Proc. K. Nederl. Akad. Wet. Proc. Ser. B, 1955, 58, 182-187.
42. J. J. Hermans, J. Polym. Sci., 1955, 18, 527-534.
43. H. C. Brinkman, Appl. Sci. Res., 1947, 1, 27-34.
44. P. Debye and A. M. Bueche, J. Chem. Phys., 1948, 16, 573-579.
45. J. T. G. Overbeek and D. Stigter, Recl. Trav. Chim. Pays-Bas, 1956, 75, 543-554.
46. N. Imai and K. Iwasa, Isr. J. Chem., 1973, 11, 223-233.
47. I. Noda, M. Nagasawa and M. Ota, J. Am. Chem. Soc., 1964, 86, 5075-5079.
48. Y. Y. He and E. Lee, Chem. Eng. Sci., 2008, 63, 5719-5727.
49. D. Long, J. L. Viovy and A. Ajdari, Phys. Rev. Lett., 1996, 76, 3858-3861.
50. T. N. Swaminathan, T. Gao and H. H. Hu, J. Colloid Interface Sci., 2010, 346, 270-276.
51. Y. Ai, B. Mauroy, A. Sharma and S. Z. Qian, Electrophoresis, 2011, 32, 2282-2291.
52. G. Tomaiuolo, M. Simeone, V. Martinelli, B. Rotoli and S. Guido, Soft Matter, 2009, 5, 3736-3740.
53. J. M. Kim and P. S. Doyle, Lab Chip, 2007, 7, 213-225.
54. G. C. Randall, K. M. Schultz and P. S. Doyle, Lab Chip, 2006, 6, 516-525.
55. G. C. Randall and P. S. Doyle, Macromolecules, 2005, 38, 2410-2418.
56. L. H. Yeh, K. Y. Fang, J. P. Hsu and S. Tseng, Colloid Surf. B-Biointerfaces, 2011, 88, 559-567.
57. L. H. Yeh, J. P. Hsu and S. Tseng, J. Phys. Chem. C, 2010, 114, 16576-16587.
58. J. P. Hsu, L. H. Yeh and M. H. Ku, J. Colloid Interface Sci., 2007, 305, 324-329.
59. H. Ohshima, Electrophoresis, 2006, 27, 526-533.
60. H. Ohshima, Adv. Colloid Interface Sci., 1995, 62, 189-235.
61. J. F. L. Duval, V. I. Slaveykova, M. Hosse, J. Buffle and K. J. Wilkinson, Biomacromolecules, 2006, 7, 2818-2826.
62. J. F. L. Duval, H. J. Busscher, B. van de Belt-Gritter, H. C. van der Mei and W. Norde, Langmuir, 2005, 21, 11268-11282.
63. J. F. L. Duval, K. J. Wilkinson, H. P. Van Leeuwen and J. Buffle, Environ. Sci. Technol., 2005, 39, 6435-6445.
64. T. Hoare and R. Pelton, Polymer, 2005, 46, 1139-1150.
65. FlexPDE, PDE Solutions Inc.: Spokane Valley, WA, 2000, version 2.22.
66. J. P. Hsu and Y. H. Tai, Langmuir, 2010, 26, 16857-16864.
67. H. Fujita, J. Phys. Soc. Jpn., 1957, 12, 968-973.
68. J. J. Lietor-Santos and A. Fernandez-Nieves, Adv. Colloid Interface Sci., 2009, 147-148, 178-185.
69. D. A. Hoagland, E. Arvanitidou and C. Welch, Macromolecules, 1999, 32, 6180-6190.
70. M. Nagasawa, A. Soda and I. Kagawa, J. Polym. Sci., 1958, 31, 439-451.
71. M. J. Garcia-Salinas, M. S. Romero-Cano and F. J. de las Nieves, J. Colloid Interface Sci., 2001, 241, 280-285.
72. G. F. Chen and U. Tallarek, Langmuir, 2003, 19, 10901-10908.
73. H. Daiguji, P. D. Yang and A. Majumdar, Nano. Lett., 2004, 4, 137-142.
74. D. Stein, M. Kruithof and C. Dekker, Phys. Rev. Lett., 2004, 93, 035901.
75. F. H. J. van der Heyden, D. J. Bonthuis, D. Stein, C. Meyer and C. Dekker, Nano Lett, 2006, 6, 2232-2237.
76. F. H. J. van der Heyden, D. Stein and C. Dekker, Phys. Rev. Lett., 2005, 95, 116104.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65246-
dc.description.abstract本論文對聚電解質的電泳行為做了理論分析。聚電解質,如DNA,蛋白質,和微生物都被廣泛應用於現代技術。在電泳動時,由於電力與流力間的交互作用,聚電解質形狀的改變將會變得很重要。為了使模擬更貼近真實的情況,此聚電解質的電泳模型同時考慮了聚電解質的形狀效應、電雙層極化效應以及反離子凝聚效應。我們發現聚電解質的形狀顯著地影響了電雙層極化及反離子凝聚,進而造成其與圓球狀聚電解質在定性與定量上的不同。而這結果並不曾在以前的理論研究中被描述過。此外,邊界效應以及由帶電荷的奈米管道所產生的電滲透流效應,其對聚電解質電泳行為的影響也都進行了討論。我們也期望這些結果能為電泳實驗的數據提供了有價值的資訊。zh_TW
dc.description.abstractElectrophoretic bahavior of a polyelectrolyte is investigated theoretically. Polyelectrolyte such as proteins, DNA, and microorganisms are applied widely in modern technology. Due to the interaction between the electric force and hydrodynamic force, the deformation of the polyelectrolyte during its electrophoresis can be significant. To simulate a case to a more realistic condition in practice, the electrophoresis of a polyelectrolyte is modeled taking account of its shape, the effect of double-layer polarization, and the effect of counterion condensation simultaneously. We show that both the double-layer polarization and the counterion condensation can be influenced significantly by the shape of a polyelectrolyte, making its behaviors different both quantitatively and qualitatively with those of a spherical polyelectrolyte, which has not been reported in previous theoretical studies. In addition, boundary effect and the effect of electroosmosis arising from a charged nanochannel on the electrophoretic behavior of the polyelectrolyte are also discussed. We expect that the results provide valuable information for the experimental data of electrophoresis.en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:32:29Z (GMT). No. of bitstreams: 1
ntu-101-R99524067-1.pdf: 4298371 bytes, checksum: 3f7c34aacd4dc534bcda463a91168bf5 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsCHINESE ABSTRACT I
ENGLISH ABSTRACT II
CONTENTS III
LIST OF TABLE IV
LIST OF FIGURES V

CHAPTER 1 Introdution 1
CHAPTER 2 Importance of the shape of a polyelectrolyte on its electrophoretic behavior 7
CHAPTER 3 Influence of Boundary on the Electrophoresis of an Ellipsoidal Polyelectrolyte in a Nanofluidic Channel 53


REFERENCES 86
APPENDIX 92
dc.language.isoen
dc.subject邊界效應zh_TW
dc.subject聚電解質zh_TW
dc.subject反離子凝聚zh_TW
dc.subject電泳zh_TW
dc.subject電雙層極化zh_TW
dc.subject電滲透zh_TW
dc.subjectEletrophoresisen
dc.subjectelectroosmosisen
dc.subjectpolyelectrolyteen
dc.subjectcounterion condensationen
dc.subjectdouble layer polarizationen
dc.subjectboundary effecten
dc.title形狀及邊界效應對聚電解質電泳行為的影響zh_TW
dc.titleEffects of Shape and Boundary on the Electrophoresis of a Polyelectrolyteen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee曾琇瑱,張有義,郭勇志,林松華,廖英志
dc.subject.keyword電泳,電滲透,聚電解質,反離子凝聚,電雙層極化,邊界效應,zh_TW
dc.subject.keywordEletrophoresis,electroosmosis,polyelectrolyte,counterion condensation,double layer polarization,boundary effect,en
dc.relation.page92
dc.rights.note有償授權
dc.date.accepted2012-07-27
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
4.2 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved