請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65246完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 徐治平 | |
| dc.contributor.author | Chih-Yuan Lin | en |
| dc.contributor.author | 林志原 | zh_TW |
| dc.date.accessioned | 2021-06-16T23:32:29Z | - |
| dc.date.available | 2012-11-30 | |
| dc.date.copyright | 2012-08-01 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-07-27 | |
| dc.identifier.citation | 1. J. L. Viovy, Rev. Mod. Phys., 2000, 72, 813-872.
2. A. V. Dobrynin and M. Rubinstein, Prog. Polym. Sci., 2005, 30, 1049-1118. 3. L. H. Yeh and J. P. Hsu, Soft Matter, 2011, 7, 396-411. 4. L. H. Yeh, K. L. Liu and J. P. Hsu, J. Phys. Chem. C, 2012, 116, 367-373. 5. J. F. L. Duval and F. Gaboriaud, Curr. Opin. Colloid Interface Sci., 2010, 15, 184-195. 6. L. H. Yeh, M. K. Zhang, S. Z. Qian and J. P. Hsu, Nanoscale, 2012, 4, 2685-2693. 7. M. K. Zhang, L. H. Yeh, S. Qian, J. P. Hsu and S. W. Joo, J. Phys. Chem. C, 2012, 116, 4793-4801. 8. S. L. Levy and H. G. Craighead, Chem. Soc. Rev., 2010, 39, 1133-1152. 9. K. D. Dorfman, Rev. Mod. Phys., 2010, 82, 2903-2947. 10. Y. Ai, J. Liu, B. K. Zhang and S. Qian, Anal. Chem., 2010, 82, 8217-8225. 11. Y. J. Kang and D. Q. Li, Microfluid. Nanofluid., 2009, 6, 431-460. 12. J. P. Hsu, Y. H. Tai, L. H. Yeh and S. J. Tseng, Langmuir, 2011, 28, 1013-1019. 13. M. K. Zhang, L. H. Yeh, S. Z. Qian, J. P. Hsu and S. W. Joo, J. Phys. Chem. C, 2012, 116, 4793-4801. 14. L. H. Yeh, S. Xue, S. W. Joo, S. Qian and J. P. Hsu, J. Phys. Chem. C, 2012, 116, 4209-4216. 15. S. W. Kowalczyk, A. R. Hall and C. Dekker, Nano. Lett., 2010, 10, 324-328. 16. S. Howorka and Z. Siwy, Chem. Soc. Rev., 2009, 38, 2360-2384. 17. J. Shendure and H. L. Ji, Nat. Biotechnol., 2008, 26, 1135-1145. 18. C. Dekker, Nat. Nanotechnol., 2007, 2, 209-215. 19. C. Heller, Electrophoresis, 2001, 22, 629-643. 20. S. K. Tripathy, J. Kumar and H. S. Nalwa, Handbook of Polyelectrolytes and Their Applications, American Scientific Publishers, Los Angeles, 2002. 21. F. Oosawa, Polyelectrolytes, Marcel Dekker, New York, 1971. 22. L. H. Yeh, J. P. Hsu, S. Qian, and S. Tseng, Electrochem. Commun., 2012, 19, 97-100. 23. G. S. Manning, J. Chem. Phys., 1969, 51, 924-933. 24. G. S. Manning, J. Phys. Chem., 1981, 85, 1506-1515. 25. G. S. Manning, J. Phys. Chem. B, 2007, 111, 8554-8559. 26. F. Oosawa, Biopolymers, 1970, 9, 677-688. 27. H. P. Hsu and E. Lee, Electrochem. Commun., 2012, 15, 59-62. 28. V. B. Teif and K. Bohinc, Prog. Biophys. Mol. Bio., 2011, 105, 208-222. 29. G. S. Manning, Biophys. Chem., 2002, 101, 461-473. 30. K. Wagner, D. Harries, S. May, V. Kahl, J. O. Radler and A. Ben-Shaul, Langmuir, 2000, 16, 303-306. 31. S. J. Chen, Annu. Rev. Biophys., 2008, 37, 197-214. 32. D. E. Draper, D. Grilley and A. M. Soto, Annu. Rev. Bioph. Biom., 2005, 34, 221-243. 33. D. Stigter, Biophys. J., 1995, 69, 380-388. 34. Q. R. Huang, P. L. Dubin, C. N. Moorefield and G. R. Newkome, J. Phys. Chem. B, 2000, 104, 898-904. 35. M. Muthukumar, J. Chem. Phys., 2004, 120, 9343-9350. 36. B. O'Shaughnessy and Q. Yang, Phys. Rev. Lett., 2005, 94, 048302. 37. U. Bohme and U. Scheler, Adv. Colloid Interface Sci., 2010, 158, 63-67. 38. R. W. O’Brien and L. R. White, J. Chem. Soc. Faraday Trans. 2, 1978, 74, 1607-1626. 39. S. Z. Qian, S. W. Joo, W. S. Hou and X. X. Zhao, Langmuir, 2008, 24, 5332-5340. 40. Y. Ai and S. Z. Qian, Phys. Chem. Chem. Phys., 2011, 13, 4060-4071. 41. J. J. Hermans and H. Fujita, Proc. K. Nederl. Akad. Wet. Proc. Ser. B, 1955, 58, 182-187. 42. J. J. Hermans, J. Polym. Sci., 1955, 18, 527-534. 43. H. C. Brinkman, Appl. Sci. Res., 1947, 1, 27-34. 44. P. Debye and A. M. Bueche, J. Chem. Phys., 1948, 16, 573-579. 45. J. T. G. Overbeek and D. Stigter, Recl. Trav. Chim. Pays-Bas, 1956, 75, 543-554. 46. N. Imai and K. Iwasa, Isr. J. Chem., 1973, 11, 223-233. 47. I. Noda, M. Nagasawa and M. Ota, J. Am. Chem. Soc., 1964, 86, 5075-5079. 48. Y. Y. He and E. Lee, Chem. Eng. Sci., 2008, 63, 5719-5727. 49. D. Long, J. L. Viovy and A. Ajdari, Phys. Rev. Lett., 1996, 76, 3858-3861. 50. T. N. Swaminathan, T. Gao and H. H. Hu, J. Colloid Interface Sci., 2010, 346, 270-276. 51. Y. Ai, B. Mauroy, A. Sharma and S. Z. Qian, Electrophoresis, 2011, 32, 2282-2291. 52. G. Tomaiuolo, M. Simeone, V. Martinelli, B. Rotoli and S. Guido, Soft Matter, 2009, 5, 3736-3740. 53. J. M. Kim and P. S. Doyle, Lab Chip, 2007, 7, 213-225. 54. G. C. Randall, K. M. Schultz and P. S. Doyle, Lab Chip, 2006, 6, 516-525. 55. G. C. Randall and P. S. Doyle, Macromolecules, 2005, 38, 2410-2418. 56. L. H. Yeh, K. Y. Fang, J. P. Hsu and S. Tseng, Colloid Surf. B-Biointerfaces, 2011, 88, 559-567. 57. L. H. Yeh, J. P. Hsu and S. Tseng, J. Phys. Chem. C, 2010, 114, 16576-16587. 58. J. P. Hsu, L. H. Yeh and M. H. Ku, J. Colloid Interface Sci., 2007, 305, 324-329. 59. H. Ohshima, Electrophoresis, 2006, 27, 526-533. 60. H. Ohshima, Adv. Colloid Interface Sci., 1995, 62, 189-235. 61. J. F. L. Duval, V. I. Slaveykova, M. Hosse, J. Buffle and K. J. Wilkinson, Biomacromolecules, 2006, 7, 2818-2826. 62. J. F. L. Duval, H. J. Busscher, B. van de Belt-Gritter, H. C. van der Mei and W. Norde, Langmuir, 2005, 21, 11268-11282. 63. J. F. L. Duval, K. J. Wilkinson, H. P. Van Leeuwen and J. Buffle, Environ. Sci. Technol., 2005, 39, 6435-6445. 64. T. Hoare and R. Pelton, Polymer, 2005, 46, 1139-1150. 65. FlexPDE, PDE Solutions Inc.: Spokane Valley, WA, 2000, version 2.22. 66. J. P. Hsu and Y. H. Tai, Langmuir, 2010, 26, 16857-16864. 67. H. Fujita, J. Phys. Soc. Jpn., 1957, 12, 968-973. 68. J. J. Lietor-Santos and A. Fernandez-Nieves, Adv. Colloid Interface Sci., 2009, 147-148, 178-185. 69. D. A. Hoagland, E. Arvanitidou and C. Welch, Macromolecules, 1999, 32, 6180-6190. 70. M. Nagasawa, A. Soda and I. Kagawa, J. Polym. Sci., 1958, 31, 439-451. 71. M. J. Garcia-Salinas, M. S. Romero-Cano and F. J. de las Nieves, J. Colloid Interface Sci., 2001, 241, 280-285. 72. G. F. Chen and U. Tallarek, Langmuir, 2003, 19, 10901-10908. 73. H. Daiguji, P. D. Yang and A. Majumdar, Nano. Lett., 2004, 4, 137-142. 74. D. Stein, M. Kruithof and C. Dekker, Phys. Rev. Lett., 2004, 93, 035901. 75. F. H. J. van der Heyden, D. J. Bonthuis, D. Stein, C. Meyer and C. Dekker, Nano Lett, 2006, 6, 2232-2237. 76. F. H. J. van der Heyden, D. Stein and C. Dekker, Phys. Rev. Lett., 2005, 95, 116104. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65246 | - |
| dc.description.abstract | 本論文對聚電解質的電泳行為做了理論分析。聚電解質,如DNA,蛋白質,和微生物都被廣泛應用於現代技術。在電泳動時,由於電力與流力間的交互作用,聚電解質形狀的改變將會變得很重要。為了使模擬更貼近真實的情況,此聚電解質的電泳模型同時考慮了聚電解質的形狀效應、電雙層極化效應以及反離子凝聚效應。我們發現聚電解質的形狀顯著地影響了電雙層極化及反離子凝聚,進而造成其與圓球狀聚電解質在定性與定量上的不同。而這結果並不曾在以前的理論研究中被描述過。此外,邊界效應以及由帶電荷的奈米管道所產生的電滲透流效應,其對聚電解質電泳行為的影響也都進行了討論。我們也期望這些結果能為電泳實驗的數據提供了有價值的資訊。 | zh_TW |
| dc.description.abstract | Electrophoretic bahavior of a polyelectrolyte is investigated theoretically. Polyelectrolyte such as proteins, DNA, and microorganisms are applied widely in modern technology. Due to the interaction between the electric force and hydrodynamic force, the deformation of the polyelectrolyte during its electrophoresis can be significant. To simulate a case to a more realistic condition in practice, the electrophoresis of a polyelectrolyte is modeled taking account of its shape, the effect of double-layer polarization, and the effect of counterion condensation simultaneously. We show that both the double-layer polarization and the counterion condensation can be influenced significantly by the shape of a polyelectrolyte, making its behaviors different both quantitatively and qualitatively with those of a spherical polyelectrolyte, which has not been reported in previous theoretical studies. In addition, boundary effect and the effect of electroosmosis arising from a charged nanochannel on the electrophoretic behavior of the polyelectrolyte are also discussed. We expect that the results provide valuable information for the experimental data of electrophoresis. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T23:32:29Z (GMT). No. of bitstreams: 1 ntu-101-R99524067-1.pdf: 4298371 bytes, checksum: 3f7c34aacd4dc534bcda463a91168bf5 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | CHINESE ABSTRACT I
ENGLISH ABSTRACT II CONTENTS III LIST OF TABLE IV LIST OF FIGURES V CHAPTER 1 Introdution 1 CHAPTER 2 Importance of the shape of a polyelectrolyte on its electrophoretic behavior 7 CHAPTER 3 Influence of Boundary on the Electrophoresis of an Ellipsoidal Polyelectrolyte in a Nanofluidic Channel 53 REFERENCES 86 APPENDIX 92 | |
| dc.language.iso | en | |
| dc.subject | 邊界效應 | zh_TW |
| dc.subject | 聚電解質 | zh_TW |
| dc.subject | 反離子凝聚 | zh_TW |
| dc.subject | 電泳 | zh_TW |
| dc.subject | 電雙層極化 | zh_TW |
| dc.subject | 電滲透 | zh_TW |
| dc.subject | Eletrophoresis | en |
| dc.subject | electroosmosis | en |
| dc.subject | polyelectrolyte | en |
| dc.subject | counterion condensation | en |
| dc.subject | double layer polarization | en |
| dc.subject | boundary effect | en |
| dc.title | 形狀及邊界效應對聚電解質電泳行為的影響 | zh_TW |
| dc.title | Effects of Shape and Boundary on the Electrophoresis of a Polyelectrolyte | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 曾琇瑱,張有義,郭勇志,林松華,廖英志 | |
| dc.subject.keyword | 電泳,電滲透,聚電解質,反離子凝聚,電雙層極化,邊界效應, | zh_TW |
| dc.subject.keyword | Eletrophoresis,electroosmosis,polyelectrolyte,counterion condensation,double layer polarization,boundary effect, | en |
| dc.relation.page | 92 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-07-27 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 4.2 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
