Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65242
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳富春(Fu-Chun Wu)
dc.contributor.authorYu-Chen Chenen
dc.contributor.author陳昱辰zh_TW
dc.date.accessioned2021-06-16T23:32:14Z-
dc.date.available2015-08-01
dc.date.copyright2012-08-01
dc.date.issued2012
dc.date.submitted2012-07-29
dc.identifier.citationBates, P. D., and J. M. Hervouet, A new method for moving boundary hydrodynamic problems in shallow water, Proc. R. Soc. London, Ser. A, 455, 3107–3128, 1999.
Bittner L.D., 1994, River Bed Response to Channel width Variation, Master Thesis, University of Illinois.
Biron, 1996, Turbulent flow structure at concordant and discordant open-channel confluence, Experiments in Fluids, 21: 437-446
Blondeaux, 1985, A unified bar-bend theory of river meanders, J . Fluid Mech., 157: 449-470
Blom, 2008, Different approaches to handling vertical and streamwise sorting in modeling river morphodynamics, Water Resource Research, Vol.44, No.3
Blom, A., Parker, G., Ribberink, J.S., de Vriend, H.J., 2006, Vertical sorting and the morphodynamics of bedform dominated rivers: An equilibrium sorting model, Journal of Geophysical Research-Earth Surface, Vol.111, No. F1
Blom, A., Parker, G., 2004, Vertical sorting and the morphodynamics of bed form-dominated rivers: A modeling framework, Journal of Geophysical Research-Earth Surface, Vol.109, No. F2
Brownlie, W. R., 1981, Prediction of flow depth and sediment discharge in open channels, Report No. KH-R-43A, W. M. Keck Laboratory of Hydraulics and Water Resources, California Institute of Technology, Pasadena, California, USA
Brufau et al., 2002, A numerical model for the flooding and drying of irregular domains, Int. J. Numer. Meth. Fluid, 39:247–275
Brooks A.N., and Hughes T.J.R., 1982, Streamline upwind/ Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Computer Methods in Applied Mechanics and Engineering, 32: 199-259.
Buffington J.M. et al., 1992, Friction angel measurements on a naturally formed gravel streambed: implication for critical boundary shear stress, Water Resource Research, Vol. 28, No. 2, 411-425
Cao and Carling, 2003, On the evolution of bed material waves in alluvial rivers, Earth Surf. Process. Landforms 28, 437–441
Cea et al., 2007, Depth Averaged Modelling of Turbulent Shallow Water Flow withWet-Dry Fronts, Arch Comput Methods Eng., 14: 303–341
Chen et al, 2010, Sediment transport on arbitrary slopes: simplified model, Journal of Hydraulic Engineering, Vol.136, No.5
Chin et al.,1994, Streambed armoring, Journal of the Hydraulics Engineering- ASCE, 120(8): 899:918.
Cui Y., Parker G. and Paola C., 1996, Numerical simulation of aggradation and downstream fining, Journal of Hydraulic Research, 34(2): 185-204.
Cui Y. and Parker G., 2003, Sediment pulses in mountain rivers: 2. Comparison between experiments and numerical predictions, Water Resources Research, 39(9): 1240.
Cui Y. and Parker G., 2005, Numerical model of sediment pulses and sediment-supply disturbances in mountain rivers, Journal of Hydraulic Engineering, 131(8): 646–656.
Cui et al., 2005, More on the evolution of bed material waves in alluvial rivers, Earth Surf. Process. Landforms 30, 107–114
Cui Y., 2007, The unified gravel-sand (TUGS) model: Simulating sediment transport and gravel/sand grain size distributions in gravel-bedded rivers, Water Resources Research, 43: W10436.
Cui Y., 2007, Examining the dynamics of grain size distributions of gravel/sand deposits in the Sandy River, Oregon with a numerical model, River Research and Applications, 23: 732-751.
Defina et al., 1994, A new set of equations for very shallow water and partially dry areas suitable to 2D numerical models, in Proceedings of the Specialty Conference on “Modelling of Flood Propagation Over Initially Dry Areas,” edited by P. Molinaro and L. Natale, pp. 72–81, Am. Soc. of Civ. Eng., New York
Defina, A., 2000, Two-dimensional shallow flow equations for partially dry areas, Water Resources Research, 36(11): 3251-3264
Defina A., 2003, Numerical experiments on bar growth, Water Resources Research, 39(4): 1092.
de Vries P., 2002, Bedload layer thickness and disturbance depth in gravel bed streams, Journal of Hydraulic Engineering, 128(11): 983-991
Dietrich W.E., Nelson P.A., Tager E., Venditti J.G. and Lamb M.P., 2005, Sediment patches, sediment supply, and channel morphology, River, Coastal and Estuarine Morphodynamics, Parker G. and Garcia M. (Eds.), Taylor & Francis Group, London.
Egiazaroff, I. V., 1965, Calculation of nonuniform sediment concentrations, Journal of Hydraulic Divisions, Vol. 91
Engelund F., 1974, Flow and bed topography in channel bends, Journal of Hydraulic Division, 100: 1631-1648.
Garde et al., 1977, Armoring process in degrading streams, Journal of the Hydraulics Division- ASCE, 103(9): 1091:1095.
Ghamry, H. K., and P. M. Steffler, 2002, Two dimensional vertical averaged and moment equations for rapidly varied flows, Journal of Hydraulic Research, 40: 579-587.
Ghanem, A. et al., 1995, Two-dimensional Finite Element Modeling of Flow in Aquatic Habitats, Water Resour. Eng. Rep. 95-S1, Department of Civil Engineering, University of Alberta, Edmonton, Canada.
Giraldo F.X., 1995, A space marching adaptive remeshing technique applied to the 3D Euler equations for supersonic flow, PhD thesis, University of Virginia.
Gosset et al., 2006, Effect of habitat fragmentation on spawning migration of brown trout, Ecology of fresh water fish, 15(3): 247:254.
Hassan M.A. and Church M., 2000, Experiments on surface structure and partial sediment transport on a gravel bed, Water Resources Research, 36(7): 1885-1895.
Hicks F.E., and Steffler P.M., 1992, Characteristic dissipative Galerkin scheme for open-channel flow, Journal of Hydraulic Engineering, 118(2): 337-352.
Hirano M., 1971, River bed degradation with armoring, Trans. Jap. Soc. Civ. Eng., 3: 194-195.
Hoey T.B., and Ferguson R., 1994, Numerical simulation of downstream fining by selective transport in gravel bed rivers: model development and illustration, Water Resources Research, 30(7): 2251-2260.
Hoger A. and Carlson D.E., 1984, Determination of the stretch and rotation in the polar decomposition of the deformation gradient, Quarterly of Applied Mathematics, 42(1): 113-117.
Hughes, T. J. R., and M. Mallet, 1986, A new finite element formulation for computational fluid dynamics: III. The generalized streamline operator for multidimensional advective-diffusive systems, Comput. Methods Appl. Mech. Eng., 58: 305-328.
Jansen et al., 1979, Principles of River Engineering: The Non-tidal Alluvial River, Pitman, London
Jia et al., 1999, Numerical model for channel flow and morphological change studies, Journal of Hydraulic Engineering, 125(9)
Jim Best, 1985, Separation zone at open channel junctions, Journal of Hydraulic Engineering, 110(11)
Jim Best, 1987, Flow dynamics at river channel confluence: implications for sediment transport and bed morphology, Recent Developments in Fluvial Sedimentology, SEPM Special Publication 39: 27-35

Johnston, C.E. and Andrews, E.D., 1998, In situ determination of particle friction angels of fluvial gravels, Water Resource Research, Vol. 34, No. 8, 2017-2030
Kleinhans, M.G. and van Rijn, L.C., 2002, Stochastic Prediction of sediment transport in sand-gravel bed rivers, Journal of Hydraulic Engineering, Vol.128, No.4
Kleinhans, M.G., 2003, Sorting in grain flows at the lee side of dunes, Earth-Science Reviews, 65: 75-102
Kleinhans, M.G., 2005, Grain-size sorting in grainflows at the lee side of deltas, Sedimentology, 52: 291-311
Lamb et al, 2008, Is the critical Shields stress for incipient sediment motion ependent on channel-bed slope?, Journal of Geophysical Research, Vol. 113
Lanzoni S., 2000, Experiments on bar formation in a straight flume: 1. Uniform sediment, Water Resource Research, 36:3337-3349
Lanzoni S, 2000, Experiments on bar formation in a straight flume: 2. Graded sediment, Water Resource Research, 36: 3351-3363
Lanzoni, 2008, Mathematical modelling of bedload transport over partially dry areas, Acta Geophysica, 56(3): 734-752
Liang and Marche, 2009, Numerical resolution of well-balanced shallow water equations with complex source terms, Advances in Water Resources, 32: 873–884
Lisle et al.,2001, The dominance of dispersion in the evolution of bed material waves in gravel-bed rivers, Earth Surf. Process. Landforms, 26: 1409–1420
Luca Solari and Gary Parker, 2000, The curious case of mobility reversal in sediment mixtures, Journal of Hydraulic Engineering, Vol.126, No.3
Lynch, D. R., and W. G. Gray, Finite element simulation of flow deforming regions, J. Comput. Phys., 36, 135–153, 1980.

Martin-Vide et al., 2002. Tagus river: historical floods at Talavera de la Reina. Palaeofloods, historical floods and climatic variability: applications in flood risk assessment, In: Proc. PHEFRA Workshop, Barcelona, October, pp. 191–196.
Meyer-Peter, E., and Mueller, R., 1948, Formulas for bed-load transport, 3rd Conference International Association of Hydraulic Research, Stockholm, Sweden, 39–64
Mosselman E., 1998, Morphological modelling of rivers with erodible banks, Hydrological Processes, 12: 1357-1370.
Mosselman and Sloff, 2008, The importance of flood for bed topography and bed sediment composition: numerical modeling of Rhine bifurcation at Pannerden, Gravel-Bed Rivers VI: From Process Understanding to River Restoration
Nelson, P.A., Dietrich, W.E. and Venditti, J.G., 2010, Bed topography and the development of forced bed surface patches, Journal of Geophysical Research, Vol. 115, F04024
Nikora, et al., 2007, Double-averaging concept for rough-bed open-channel and overland flows: Theoretical background, J. Hydraul. Eng. 133, 8, 873-883.
Nikora, et al., 2007, Double-averaging concept for rough-bed open-channel and overland flows: Applications, J. Hydraul. Eng. 133, 8, 884-895.
Papanicolaou et al., 2008, Sediment Transport Modeling Review—Current and Future Developments, Journal of Hydraulic Engineering
Parker, G., Dhamotharan, S., Stefan, S., 1982, Model experiments on mobile paved gravel bed streams, Water Resource Research, Vol.18(5)
Parker, G., Klingeman, P., 1982, On why gravel bed streams are paved, Water Resource Research, Vol.18(5)
Parker G., 1991, Selective sorting and abrasion of river gravel. I. Theory, Journal of Hydraulic Engineering, 117(2): 131-149.

Parker G., 1991, Selective sorting and abrasion of river gravel. II Applications, Journal of Hydraulic Engineering, 117(2): 150-171.
Parker G., 1991, Surface-based bedload transport relation for gravel rivers, Journal of Hydraulic Research, 28(4): 417-436.
Parker, Paola and Leclair, 2000, Probabilistic Exner sediment continuity equation for mixtures with no active layer, Journal of Hydraulic Engineering, Vol. 126, No.11
Persson, Per-Olof and Strang, Gilbert, 2004, A simple mesh generator in Matlab, SIAM Rev. 46 No.2
Repetto, 2002, Planimetric instability of channels with variable width, J. Fluid Mech. 457: 79-109
Ribberink, J. S., 1987, Mathematical modelling of one-dimensional morphological changes in rivers with non-uniform sediment, PhD thesis, Delft University., The Netherlands.
Roca, M. et al., 2009, Modeling a torrential event in a river confluence, Journal of Hydrology, 364: 207-215.
Seal, R., Paola, C., Parker, G., Southard, J.B., Wilcock, P.R., 1997, Experiments of downstream fining of gravel: narrow-channel runs, Journal of Hydraulic Engineering, Vol. 123(10)
Shakibainia, 2010, Three-dimensional numerical study of flow structure in channel confluence, Canadian Journal of Civil Eng., 37: 772-781
Shields, A., 1936, Anwendung der aenlichkeitsmechanik und der turbulenzforschung auf die geschiebebewegung. Mitteilungen der Preussischen Versuchsanstalt fur Wasserbau und Schiffbau, Berlin, Germany, translated to English by W. P. Ott and J. C. van Uchelen, CalTech, Pasadena, CA.
Shimizu Y. and Itakura T., 1989, Calculation of bed variation in alluvial channels, Journal of Hydraulic Engineering, 115(3): 367-384.

Struiksma N., Olesen K.W., Flokstra C. and De Veriend H.J., 1985, Bed deformation in curved alluvial channels, Journal of Hydraulic Research, 23: 57-79.
Van Rijn, L. C., 1984, Sediment transport, part I: bed load transport, Journal of Hydraulic Engineering, Vol. 110(10)
Vasquez J.A., 2005, Two-dimensional finite element river morphology model, PhD thesis, University of British Columbia, Canada.
Vasquez J.A., Millar R.G., and Steffler P.M., 2007, Two-dimensional finite element river morphology model, Canadian Journal of Civil Eng., 34: 752-760.
Viparelli, E., 2010, River morphodynamics with creation/consumption of grain size stratigraphy 1: laboratory experiments, Journal of Hydraulic Research, 48(6): 715-726.
Viparelli, E., 2010, River morphodynamics with creation/consumption of grain size stratigraphy 2: numerical model, Journal of Hydraulic Research, 48(6): 715-726.
Webber, 2001, Experiments on flow at a 90° open-channel junction, Journal of Hydraulic Engineering, 127(5)
Wilcock P.R. and McArdell B.W., 1997, Partial transport of a sand/gravel sediment, Water Resources Research, 33(1): 235-245.
Wilcock P.R., 1998, Two-fraction model of initial sediment motion in gravel-bed rivers, Science, 280: 410-412.
Wilcock P.R., Kenworthy S.T., and Crowe J.C., 2001, Experimental study of the transport of mixed sand and gravel, Water Resources Research, 37: 3349-3358.
Wilcock P.R., 1988, Methods for estimating the critical shear stress of individual fractions in mixed-size sediment, Water Resources Research, 24(7): 1127-1135.
Wilcock P.R. and McArdell B.W., 1993, Surface-based fractional transport rates: Mobilization thresholds and partial transport of a sand-gravel sediment, Water Resources Research, 29: 1297-1312.
Wilcock P.R. and Crowe J.C., 2003, Surface-based transport model for mixed-size sediment, Journal of Hydraulic Engineering, 129(2): 120-128.
Wilcock P.R. and DeTemple B.T., 2005, Persistence of armor layers in gravel-bed streams, Geophysical Research Letters, 32: L08402.
Wu F.C., 2000, Modeling embryo survival affected by sediment deposition into salmonid spawning gravels: Application to flushing flow prescriptions, Water Resources Research, 36: 1595-1603.
Wu F.C. and Chou Y.J., 2003, Simulation of gravel-sand bed response to flushing flows using a two-fraction entrainment approach: Model development and flume experiment, Water Resources Research, 39(8): 1211.
Wu F.C. and Chou Y.J., 2004, Tradeoffs associated with sediment-maintenance flushing flows: A simulation approach to exploring non-inferior options, River Research and Applications, 20: 591-604.
Wu F.C., and Yeh T.H., 2005, Forced bars induced by variations of channel width: Implications for incipient bifurcation, Journal of Geophysical Research, 110,
F02009.
Zanichelli, G., Caroni, E., Fiorotto, V., 2004. River bifurcation analysis by physical and numerical modeling. Journal of Hydraulic Engineering 130 (3), 237–242.
Zech Y. et al., 2005, The morphodynamics of super- and transcritical flow, in River, Coastal and Estuarine Morphodynamics, edited by Parker G. and Garcia M., pp.239-251, Taylor & Francis Group, London.
Zhang, W., and T. W. Cundy, 1989, Modeling of two-dimensional overland flow, Water Resource Research, 25(9): 2019–2035
Zokagoa, Jean-Marie, Soulaimani, Azzeddine, 2008, Modeling of wetting–drying transitions in free surface flows over complex topographies, Computer Methods in Applied Mechanics and Engineering, Vol.199
Zoppou and Robert, 1999, Catastrophic collapse of water supply reservoirs in urban areas, Journal of Hydraulic Engineering, 125(7)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65242-
dc.description.abstract河川形貌動力學(River morphology)之知識乃為河岸工程建設與淡水環境棲地復育之基礎。許多特別之現象如河床甲護化(Armoring)及下游顆粒細化(Downstream fining)等,均顯著地影響了河川生物棲地之品質。因此,瞭解中尺度河川地形貌(Meso-scale bedforms)之演變及其底床顆粒之組成變化乃為一重要之課題;然而河川之水流水理、底床之非均勻粒徑組成及輸砂運移事件此三者間複雜之交互作用使得形貌動力之問題非常難以處理。本研究中,吾人發展了一套二維水深平均(Depth-averaged 2D)能夠處理多粒徑輸砂(Mixed-size sediment transport)之有限元素(Finite element)形貌動力模式,並研發了垂直方向連續篩化(Vertical continuous sorting)之演算機制─虛擬質量法(Virtual mass),以試圖瞭解天然河川中常見之區塊動力(Patch dynamics)等問題其形貌與粒徑組成之演變;模式中應用特徵消散有限元素上風方法(Characteristic dissipative Galerkin, CDG scheme)於乾溼演算水理模組(Wetting and drying module)及床貌演變模組(Bed evolution module)以處理傳遞主導(Advection dominated)之砂洲遷移問題中常見之數值不穩定性問題(Numerical instability)。zh_TW
dc.description.abstractThe knowledge of river morphology is fundamental and useful information for engineering and habitat restoration purposes. Many interesting phenomena such as armoring and downstream fining significantly affect the quality of riverine habitats. Therefore, the development of meso-scale bedforms and the change in their sediment composition have become important topics of study. However, the complex interactions between flood flow, nonuniform particles and sediment transport make these problems difficult to tackle. In this study, we develop a 2D (two-dimensional) many-fraction FE (finite element) morphodynamic model which is capable of dealing with mixed-size sediment transport problems. We also present a new type of vertical sorting scheme, the virtual mass method, to investigate the common phenomenon such as patch dynamics that could occurs in most natural rivers. The proposed model adopts the characteristic dissipative Galerkin (CDG) scheme in the wetting and drying module and bed evolution module such that the convection dominated bar evolution can be computed without numerical instabilities.en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:32:14Z (GMT). No. of bitstreams: 1
ntu-101-R98622019-1.pdf: 4625881 bytes, checksum: b62caf985a7b615c969f334b45bee44d (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員會審書 ........................................... i
誌謝 .................................................... ii
中文摘要 ................................................iii
英文摘要 .................................................iv
目錄 ..................................................... v
圖目錄 ................................................. vii
表目錄 .................................................. ix
符號表 ................................................... x
第一章 緒論 ............................................1-1
1.1 前言 ............................................. 1-1
1.3 文獻回顧 ......................................... 1-2
1.4 研究目的 ......................................... 1-4
第二章 理論架構 ........................................2-1
2.1 水理模組 ......................................... 2-1
2.1.1 水深平均雷諾方程式 ............................2-1
2.1.2 乾溼演算控制方程式 ............................2-5
2.2 床貌演變模組 ..................................... 2-8
2.2.1 泥砂連續方程式 ................................2-9
2.2.2 床面基準輸砂式 ...............................2-10
2.2.3 泥砂顆粒摩擦角 ...............................2-19
2.3 粒徑篩化模組 .................................... 2-20
2.3.1 活動層與副表層 ...............................2-21
2.3.2 虛擬質量分配法 ...............................2-22
2.3.3 底床組成穩定演算機制 ......................... 2-26
第三章 數值方法 .......................................3-1
3.1 特徵消散有限元素法 ................................3-1
3.1.1 特徵消散法應用於水理模組 ......................3-2
3.1.2 特徵消散法應用於乾溼演算 .....................3-6
3.1.3 特徵消散法應用於床貌演變組 ....................3-9
3.2 模式執行 ....................................... 3-12
第四章 模式驗證 ........................................4-1
4.1 變量流乾溼演算試驗 .................................4-1
4.2 形貌動力與粒徑篩化驗證 ..............................4-7
第五章 模式應用 ........................................5-1
5.1 新店溪複合流量水理應用 ............................5-1
5.1.1 研究區域地形取樣 .............................5-1
5.1.2 坡度適應格網演算 ..............................5-8
5.1.3 多重流量棲地分析 ............................5-10
5.2 強制床面區塊動力試驗 .............................5-20
5.2.1 試驗材料與方法 ...............................5-20
5.2.2 床面區塊之發展與穩定 .........................5-25
第六章 結論與建議 ......................................6-1
6.1 結論 ............................................. 6-1
6.2 建議 ............................................. 6-2
參考文獻 ................................................7-1
附錄 ...................................................8-1
dc.language.isozh-TW
dc.subject特徵消散法zh_TW
dc.subject泥砂篩化zh_TW
dc.subject區塊動力zh_TW
dc.subject形貌動力模式zh_TW
dc.subject多粒徑輸砂zh_TW
dc.subjectmixed-size sedimenten
dc.subjectcharacteristic dissipative Galerkinen
dc.subjectmorphodynamic modelen
dc.subjectpatch dynamicsen
dc.subjectsediment sortingen
dc.title以特徵消散有限元素形貌動力模式模擬粒徑篩化現象zh_TW
dc.titleSimulation of Grain Sorting Using the Characteristic Dissipation Galerkin Morphodynamic ( CDG-Morpho ) Modelen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蕭政宗,周逸儒,賴悅仁
dc.subject.keyword形貌動力模式,特徵消散法,多粒徑輸砂,泥砂篩化,區塊動力,zh_TW
dc.subject.keywordmorphodynamic model,characteristic dissipative Galerkin,mixed-size sediment,sediment sorting,patch dynamics,en
dc.relation.page144
dc.rights.note有償授權
dc.date.accepted2012-07-30
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
4.52 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved