Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65231
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor余榮熾
dc.contributor.authorYu-Hsuan Yangen
dc.contributor.author楊于萱zh_TW
dc.date.accessioned2021-06-16T23:31:29Z-
dc.date.available2012-08-09
dc.date.copyright2012-08-09
dc.date.issued2012
dc.date.submitted2012-07-27
dc.identifier.citation1. Spitalnik, P.F. and S.L. Spitalnik, The P blood group system: biochemical, serological, and clinical aspects. Transfus Med Rev, 1995. 9(2): p. 110-22.
2. Daniels, G., Human Blood Groups2002, Blackwell Scientific.
3. Stroud, M.R., A.E. Stapleton, and S.B. Levery, The P histo-blood group-related glycosphingolipid sialosyl galactosyl globoside as a preferred binding receptor for uropathogenic Escherichia coli: isolation and structural characterization from human kidney. Biochemistry, 1998. 37(50): p. 17420-8.
4. Haataja, S., et al., Characterization of a novel bacterial adhesion specificity of Streptococcus suis recognizing blood group P receptor oligosaccharides. J Biol Chem, 1993. 268(6): p. 4311-7.
5. Lund, N., et al., The human P(k) histo-blood group antigen provides protection against HIV-1 infection. Blood, 2009. 113(20): p. 4980-91.
6. Tilley, L., C. Green, and G. Daniels, Sequence variation in the 5' untranslated region of the human A4GALT gene is associated with, but does not define, the P1 blood-group polymorphism. Vox Sang, 2006. 90(3): p. 198-203.
7. Chandeysson, P.L., et al., Delayed hemolytic transfusion reaction caused by anti-P1 antibody. Transfusion, 1981. 21(1): p. 77-82.
8. Cheng, M.S., Potent anti-P1 following blood transfusions. Transfusion, 1984. 24(2): p. 183.
9. Matson, G.A., et al., A new antigen and antibody belonging to the P blood group system. Am J Hum Genet, 1959. 11(1): p. 26-34.
10. Fellous, M., et al., Studies on the biosynthetic pathway of human P erythrocyte antigens using somatic cells in culture. Vox Sang, 1974. 26(6): p. 518-36.
11. Fellous, M., et al., Studies on the biosynthetic pathway of human P erythrocyte antigen using genetic complementation tests between fibroblasts from rare p and Pk phenotype donors. Vox Sang, 1977. 32(5): p. 262-8.
12. Kijimoto-Ochiai, S., M. Naiki, and A. Makita, Defects of glycosyltransferase activities in human fibroblasts of Pk and p blood group phenotypes. Proc Natl Acad Sci U S A, 1977. 74(12): p. 5407-10.
13. Naiki, M. and D.M. Marcus, An immunochemical study of the human blood group P1, P, and PK glycosphingolipid antigens. Biochemistry, 1975. 14(22): p. 4837-41.
14. Graham, H.A. and A.N. Williams, A genetic model for the inheritance of the P, P1 and Pk antigens. Immunol Commun, 1980. 9(2): p. 191-201.
15. Julier, C., et al., A linkage and physical map of chromosome 22, and some applications to gene mapping. Am J Hum Genet, 1988. 42(2): p. 297-308.
16. McAlpine, P.J., H. Kaita, and M. Lewis, Is the DIA1 locus linked to the P blood group locus? Cytogenet Cell Genet, 1978. 22(1-6): p. 629-32.
17. Steffensen, R., et al., Cloning and expression of the histo-blood group Pk UDP-galactose: Ga1beta-4G1cbeta1-cer alpha1, 4-galactosyltransferase. Molecular genetic basis of the p phenotype. J Biol Chem, 2000. 275(22): p. 16723-9.
18. Amado, M., et al., Identification and characterization of large galactosyltransferase gene families: galactosyltransferases for all functions. Biochim Biophys Acta, 1999. 1473(1): p. 35-53.
19. Iwamura, K., et al., The blood group P1 synthase gene is identical to the Gb3/CD77 synthase gene. A clue to the solution of the P1/P2/p puzzle. J Biol Chem, 2003. 278(45): p. 44429-38.
20. Thuresson, B., J.S. Westman, and M.L. Olsson, Identification of a novel A4GALT exon reveals the genetic basis of the P1/P2 histo-blood groups. Blood, 2011. 117(2): p. 678-87.
21. Hellberg, A., M.A. Chester, and M.L. Olsson, Two previously proposed P1/P2-differentiating and nine novel polymorphisms at the A4GALT (Pk) locus do not correlate with the presence of the P1 blood group antigen. BMC Genet, 2005. 6: p. 49.
22. Okuda, T. and K. Nakayama, Identification and characterization of the human Gb3/CD77 synthase gene promoter. Glycobiology, 2008. 18(12): p. 1028-35.
23. Reid, M.E., Transfusion in the age of molecular diagnostics. Hematology Am Soc Hematol Educ Program, 2009: p. 171-7.
24. Schug, J., Using TESS to predict transcription factor binding sites in DNA sequence. Curr Protoc Bioinformatics, 2008. Chapter 2: p. Unit 2 6.
25. Carey, M.F., C.L. Peterson, and S.T. Smale, Experimental strategies for the identification of DNA-binding proteins. Cold Spring Harb Protoc, 2012. 2012(1): p. 18-33.
26. Yuasa, H., et al., Oncogenic transcription factor Evi1 regulates hematopoietic stem cell proliferation through GATA-2 expression. EMBO J, 2005. 24(11): p. 1976-87.
27. Lulli, V., et al., Transcriptional silencing of the ETS1 oncogene contributes to human granulocytic differentiation. Haematologica, 2010. 95(10): p. 1633-41.
28. Melotti, P. and B. Calabretta, Ets-2 and c-Myb act independently in regulating expression of the hematopoietic stem cell antigen CD34. J Biol Chem, 1994. 269(41): p. 25303-9.
29. Suzuki, M., et al., Differential contribution of the Gata1 gene hematopoietic enhancer to erythroid differentiation. Mol Cell Biol, 2009. 29(5): p. 1163-75.
30. Kitajima, K., et al., Redirecting differentiation of hematopoietic progenitors by a transcription factor, GATA-2. Blood, 2006. 107(5): p. 1857-63.
31. John, L.B. and A.C. Ward, The Ikaros gene family: transcriptional regulators of hematopoiesis and immunity. Mol Immunol, 2011. 48(9-10): p. 1272-8.
32. Benz, E.J., Jr., et al., Embryonic-fetal erythroid characteristics of a human leukemic cell line. Proc Natl Acad Sci U S A, 1980. 77(6): p. 3509-13.
33. Fukuda, M., K562 human leukaemic cells express fetal type (i) antigen on different glycoproteins from circulating erythrocytes. Nature, 1980. 285(5764): p. 405-7.
34. Caballero, R., et al., Combinatorial effects of splice variants modulate function of Aiolos. J Cell Sci, 2007. 120(Pt 15): p. 2619-30.
35. Matulic, M., et al., Analysis of Ikaros family splicing variants in human hematopoietic lineages. Coll Antropol, 2010. 34(1): p. 59-62.
36. Kojima, Y., et al., Molecular cloning of globotriaosylceramide/CD77 synthase, a glycosyltransferase that initiates the synthesis of globo series glycosphingolipids. J Biol Chem, 2000. 275(20): p. 15152-6.
37. Dittmer, J., The biology of the Ets1 proto-oncogene. Mol Cancer, 2003. 2: p. 29.
38. Dhulipal, P.D., Ets oncogene family. Indian J Exp Biol, 1997. 35(4): p. 315-22.
39. Bresnick, E.H., et al., GATA switches as developmental drivers. J Biol Chem, 2010. 285(41): p. 31087-93.
40. Fuchs, O., [EVI1 and its role in myelodysplastic syndrome, myeloid leukemia and other malignant diseases]. Cas Lek Cesk, 2006. 145(8): p. 619-24.
41. Gaston, K. and P.S. Jayaraman, Transcriptional repression in eukaryotes: repressors and repression mechanisms. Cell Mol Life Sci, 2003. 60(4): p. 721-41.
42. Hahm, K., et al., Helios, a T cell-restricted Ikaros family member that quantitatively associates with Ikaros at centromeric heterochromatin. Genes Dev, 1998. 12(6): p. 782-96.
43. Koipally, J., et al., Repression by Ikaros and Aiolos is mediated through histone deacetylase complexes. EMBO J, 1999. 18(11): p. 3090-100.
44. Morgan, B., et al., Aiolos, a lymphoid restricted transcription factor that interacts with Ikaros to regulate lymphocyte differentiation. EMBO J, 1997. 16(8): p. 2004-13.
45. Knight, J.C., B.J. Keating, and D.P. Kwiatkowski, Allele-specific repression of lymphotoxin-alpha by activated B cell factor-1. Nat Genet, 2004. 36(4): p. 394-9.
46. Bottardi, S., et al., Ikaros and GATA-1 combinatorial effect is required for silencing of human gamma-globin genes. Mol Cell Biol, 2009. 29(6): p. 1526-37.
47. Koipally, J., et al., Unconventional potentiation of gene expression by Ikaros. J Biol Chem, 2002. 277(15): p. 13007-15.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65231-
dc.description.abstractP1醣抗原是屬於紅血球抗原系統中的一員,在族群中可區分為P1表現型與P1非表現型兩種型別。P1醣抗原由Galα1-4Galβ1-4GlcNAc的結構所決定,由過去的研究已推斷紅血球表面P1醣抗原的表現極有可能是由α1,4-galactosyltransferase (A4GALT)所負責;而個體間P1抗原表現型與非表現型可能是由A4GALT基因表現量的差異所造成,因此我們推測A4GALT是受到了不同的轉錄調控,造成了P1抗原表現或缺失。
為了要證明這個推測,首先必須要證明A4GALT在紅血球中的轉錄調控機制,找出表現A4GALT所需的轉錄因子。在實驗室之前的研究中,已證明P1抗原表現型與非表現型和A4GALT基因intron 1區域的8個single-nucleotide polymorphism (SNP)有強烈的關聯。我們由這些SNP位點推測出8個可能結合的轉錄因子。我們利用表現載體將這些轉錄因子大量表現於K562細胞中,而後進行qPCR,偵測這些轉錄因子對A4GALT基因表現的影響。
大量表現轉錄因子Ikaros或Aiolos後,利用qPCR測出A4GALT transcript約上升5倍。接著利用reporter assay測試Ikaros或Aiolos對P1抗原表現型與非表現型對偶基因(allele)作用後的差異,進一步確認轉錄因子Ikaros或Aiolos是否造成A4GALT基因表現差異,但實驗結果無法看出Ikaros和Aiolos對P1抗原表現型與非表現型對偶基因有明顯影響。我們推測可能需要多種轉錄因子的合作,使P1抗原表現型與非表現型對偶基因的轉錄活性有明顯差異,此研究還需要未來更多的實驗進一步探討,以了解A4GALT的轉錄調控和紅血球P1抗原表現型與非表現型的分子遺傳機制。
zh_TW
dc.description.abstractP1 antigen is glycosphingolipid in human erythrocyte membrane. Erythrocytes are classified according to the expression of P1 antigen: P1-positive (P1+) phenotype and P1-negative (P1-) phenotype. P1 antigenic structure is Galα1-4Galβ1-4GlcNAc and the enzyme responsible for synthesis P1 antigen would be α1,4-galactosyltransferase (A4GALT). The difference between P1+/- erythrocytes might result from the difference of A4GALT transcript levels. Hence, the different transcriptional regulation of the A4GALT gene might be a major factor determining P1+/- phenotypes.
In order to prove this speculation, we try to prove the transcriptional regulatory mechanisms of the A4GALT and identify transcription factors which are required for A4GALT expression. In previous studies, 8 single-nucleotide polymorphisms (SNP) in A4GALT intron 1 were found with correlation to the P1+/- phenotypes. We speculated that those different eight transcription factors might recognize and bind to these eight SNPs. We used the expression vector to overexpress these transcription factors in K562 cells, and then quantify the expression level of A4GALT by qPCR.
Overexpression of the transcription factor Ikaros or Aiolos increased the abundance of A4GALT transcripts (5 times). Then, we used the reporter assay to observe the difference caused by Ikaros or Aiolos between the P1+/- alleles in order to know whether Ikaros or Aiolos could modulate A4GALT expression. We found that Ikaros and Aiolos might not involve in the allele-specific modulation of A4GALT. We suggest that the significant difference between P1+ and P1- allele requires the cooperation of various transcription factors. We hope to understand the transcriptional regulatory mechanisms of A4GALT expression and the relation between A4GALT and P1 antigen polymorphism.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:31:29Z (GMT). No. of bitstreams: 1
ntu-101-R99b46029-1.pdf: 2174431 bytes, checksum: 2bec21db7f080cd9d72fe9d0578547ab (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents目 錄
中文摘要................................................. i
英文摘要................................................ ii
縮寫表................................................. vii
第一章 緒論.............................................. 1
1.1 P1PK血型系統 ........................................ 1
1.2 A4GALT基因的調控與P1抗原的表現....................... 2
1.3 研究構想與目的....................................... 4
第二章 材料與方法........................................ 7
2.1 核酸定序Sequencing................................... 7
2.2 細胞培養............................................. 7
2.3 表現載體的構築....................................... 7
2.4 大量表現轉錄因子於K562細胞........................... 9
2.5 西方墨點法Western Blot.............................. 10
2.6 分析A4GALT transcripts的表現量...................... 10
2.7 Luciferase Reporter Assay........................... 11
第三章 結果............................................. 13
3.1 在A4GALT基因上與P1抗原表現相關的SNP確認............. 13
3.2 轉錄因子對A4GALT基因表現的影響...................... 13
3.3 觀察轉錄因子對P1+/- allele轉錄活性的影響............ 14
第四章 討論............................................. 15
參考文獻................................................ 30
圖 目 錄
圖1. 以PCR放大轉錄因子ETS1轉譯區域的示意圖.............. 20
圖2. 以PCR放大轉錄因子Aiolos轉譯區域的示意圖............ 21
圖3. 以PCR放大轉錄因子Ikaros轉譯區域的示意圖............ 22
圖4. 用Western blot確認轉錄因子ETS1、Ikaros和Aiolos在K562細胞中的表現..... 24
圖5. 轉錄因子ETS1、Ikaros和Aiolos對A4GALT基因表現的影響................... 25
圖6. 觀察轉錄因子Ikaros和Aiolos對P1+/- allele轉錄活性的影響............... 26
附圖1. A4GALT基因與SNP.................................. 37
附圖2. SNP與可能結合的轉錄因子.......................... 38
附圖3. 表現載體pCMV-3Tag-9.............................. 39
附圖4. 轉錄因子EVI1、ETS2和GATA1對A4GALT基因表現的影響(結果來源陳建佑).... 40
附圖5. 觀察轉錄因子GATA1對P1+/- allele轉錄活性的影響(結果來源陳建佑)...... 41
表 目 錄
表1. 核酸定序的primer名稱與序列......................... 28
表2. 放大轉錄因子轉譯區域的primer名稱與序列............. 29
dc.language.isozh-TW
dc.titleA4GALT基因轉錄調控機制的研究zh_TW
dc.titleTranscriptional regulatory mechanisms of the A4GALTen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張?仁,朱善德,張茂山
dc.subject.keywordP1 抗原,A4GALT,SNP,轉錄因子,zh_TW
dc.subject.keywordP1 antigen,A4GALT,SNP,transcription factor,en
dc.relation.page41
dc.rights.note有償授權
dc.date.accepted2012-07-30
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  目前未授權公開取用
2.12 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved