Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 口腔生物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65230
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李伯訓(Bor-Shiunn Lee)
dc.contributor.authorHsin-Fu Chenen
dc.contributor.author陳信甫zh_TW
dc.date.accessioned2021-06-16T23:31:24Z-
dc.date.available2017-09-19
dc.date.copyright2012-09-19
dc.date.issued2012
dc.date.submitted2012-07-27
dc.identifier.citation1. Craig RG, Peyton FA. The microhardness of enamel and dentin. Journal of Dental Research 1958; 37: 661-668.
2. Swindler DR. Primate Dentition: An Introduction to the Teeth of Non-human Primates. New York: Cambridge University Press; 2002.
3. Summitt JB, Robbins JW, Hilton TJ, Schwartz RS, Santos JD. Fundamentals of Operative Dentistry: A Contemporary Approach. 3th ed. Chicago: Quintessence Publishing Company; 2006.
4. Zenobioa MF, Nogueira MS, Zenobiob EG. Chemical composition of human enamel and dentin. Preliminary results to determination of the effective atomic number. Buenos Aires: Proceedings of the IRPA International Congress of the International Radiation Protection Association; 2008.
5. Banerjee A, Watson TF. Pickard's Manual of Operative Dentistry. New York: Oxford University Press; 2011.
6. Lambrechts P, Braem M, Vuylsteke-Wauters M, Vanherle G. Quantitative in vivo wear of human enamel. Journal of Dental Research 1989; 68: 1752-1754.
7. Strassler HE. Toothpaste Ingredients Make A Difference: Patient-Specific Recommendations. Worcester: The Incisal Edge Incorporated; 2011.
8. Gutierrez-Salazar MP, Reyes-Gasga J. Microhardness and chemical composition of human tooth. Materials Research 2003; 6: 367-373.
9. De Freitas PM, Turssi CP, Hara AT, Serra MC. Dentin microhardness during and after whitening treatments. Quintessence International Journal 2004; 35: 411-417.
10. Hilton TJ, Ferracane JL. Cavity preparation factors and microleakage of class II composite restorations filled at intraoral temperatures. Quintessence International Journal 2002; 33: 337-346.
11. Nanci A. Ten Cate’s Oral Histology: Development, Structure, and Function, ed 6. New York: Elsevier Science Health Science; 2003.
12. Garant PR. Oral Cell and Tissues. Chicago: Quintessence Publishing Company; 2003.
13. Katz JL, Misra A, Spencer P, Wang Y, Bumrerraj S, Nomura T, Eppell SJ, Tabib-Azar M. Multiscale mechanics of hierarchical structure/property relationships in calcified tissues and tissue/material interfaces. Materials Science and Engineering 2007; 27: 450-468.
14. Mjor IA, Ferrari M. Reactions to restorative materials, tooth-restoration interfaces, and adhesive techniques. Chicago: Quintessence Publishing Company; 2002.
15. Izumi T, Inoue H, Matsuura H, Mukae F, Osoegawa H, Hirano H, Tamura N. Changes in the pattern of horseradish peroxidase diffusion into predentin and dentin after cavity preparation in rat molars. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology 2001; 92: 675-681.
16. Okiji T. Pulp as a connective tissue. Chicago: Quintessence Publishing Company; 2002.
17. Avery JK. Oral Development and Histology, 3th ed. New York: Thieme Medical Publishers Incorporated; 2001.
18. Lynch CD, O'Sullivan VR, McGillycuddy CT. Pierre fauchard: the 'Father of Modern Dentistry'. British Dental Journal 2006; 201: 779-781.
19. Morgano SM, Brackett SE. Foundation restorations in fixed prosthodontics: current knowledge and future needs. Journal of Prosthetic Dentistry 1999; 82: 643-657.
20. 陳瑞松. 牙本質黏合劑簡介. 台北市: Chin Dent J(中華牙誌); 1987.
21. Larson TD. The clinical significance and management of microleakage. Journal of the Minnesota Dental Association 2005; 84: 15-19.
22. Buonocore MG. A simple method of increasing the adhesion of acrylic filling materials to enamel surfaces. Journal of Dental Research 1955; 34: 849-853.
23. Duke ES. Adhesion and its application with restorative materials. Dental Clinics of North America 1993; 37: 329-340.
24. Phillips RW. Skinners Science of Dental Materials, ed 8. Philadelphia: W.B. Saunders Company; 1991.
25. Packham DE. Handbook of Adhesion, 2 edition. Hoboken: John Wiley & Sons Incorporated; 2005.
26. Violich DR, Chandler NP. The smear layer in endodontics - a review. International Endodontic Journal 2010; 43: 2-15.
27. Eick JD, Wilko RA, Anderson CH, Sorenson SE. Scanning electron microscopy of cut tooth surfaces and identification of debris by use of electron microprobe. Journal of Dental Research 1970; 49: 1359-1368.
28. Pashley DH. Smear layer: An overview of structure and function. Proceedings of the Finnish Dental Society 1992; 88: 215-224.
29. McComb D, Smith DC. A preliminary scanning electron microscopic study of root canals after endodontic procedures. Journal of Endodontics 1975; 7: 238-242.
30. Pashley DH, Tao L, Boyd L, King GE, Horner JA. Scanning electron microscopy of substructure of smear layers in human dentine. Arch Oral Biol 1988; 33: 265-270.
31. Meryon SD, Tobias RS, Jakeman KJ. Smear removal agents: a quantitative study in vivo and in vitro. Journal of Prosthetic Dentistry 1987; 57: 174-179.
32. Pashley DH, Michelich V, Kehl T. Dentin permeability: effects of smear layer removal. Journal of Prosthet Dentistry 1981; 46: 531-537.
33. Tagami J, Tao L, Pashley DH, Hosoda H, Sano H. Effects of high speed cutting on dentin permeability and bonding. Dental Materials 1991; 7: 234-239.
34. Shirai K, De Munck J, Yoshida Y, et al. Effect of cavity configuration and aging on the bonding effectiveness of six adhesives to dentin. Dental Materials 2005; 21: 110-124.
35. Camps J, Dejou J, Remusat M, About I. Factors influencing pulpal response to cavity restorations. Dental Materials 2000; 16: 432-440.
36. Kugel G, Ferrari M. The science of bonding: from first to sixth generation. Journal of the American Dental Association 2000; 131 Suppl: 20S-25S.
37. Buonocore M, Wileman W, Brudevold F. A report on a resin composition capable of bonding to human dentin surfaces. Journal of Dental Research 1956; 35: 846-851.
38. Kuo SM, Liou CC, Chuang CL, Wang YJ. Studies of the effects of PVA-AE on dentinal bonding of HEMA. Journal of Medical and Biological Engineering 2001; 21: 243-248.
39. Pizzi A, Mittal KL. Handbook of Adhesive Technology. New York: Marcel Dekker Incorporated; 2003.
40. Tay FR, Pashley DH. Have dentin adhesives become too hydrophilic? Journal of the Canadian Dental Association 2003; 69: 726-731.
41. Asmussen E, Hansen EK. Dentin bonding agents, ed 2. Leuven: Belgium: Van der Poorten; 1994.
42. Eliades GC, Vougiouklakis GJ. 31P-NMR study of P-based dental adhesives and electron probe microanalysis of simulated interfaces with dentin. Dental Materials 1989; 5: 101-108.
43. Huang GT, Soderholm K-JM. In vitro investigation of shear bond strength of a phosphate based dentinal bonding agents. Scandinavian Journal of Dental Research 1989; 97: 84-92.
44. Yu XY, Joynt RB, Wieczkowski G, Davis EL. Scanning electron microscopic and energy dispersive x-ray evalution of two smear layer-mediated dentinal bonding agents. Quintessence International Journal 1991; 22: 305-310.
45. Retief DH, Austin JC, Fatti LP. Pupal response to phosphoric acid. Journal of Oral Pathology & Medicine 1974; 3: 114-122.
46. Cox CF. Effects of adhesive resins and various dental cements on the pulp. The Open Dentistry Journal 1992; suppl 5: 165-176.
47. Nakabayashi N, Kojima K, Masuhara E. The promotion of adhesion by the infiltration of monomers into tooth substrates. Journal of Biomedical Materials Research 1982; 16: 265-273.
48. Van Meerbeek B, Inoue S, Pedigao J, et al. In Fundamentals of Operative Dentistry, 2nd Ed. Chicago: Quintessence Publishing Company; 2001.
49. Bertolotti RL. Acid etching of dentin. Quintessence International Journal 1990; 21: 77-88.
50. Fusayama T, Nakamura M, Kurosaki N, Iwaku M. Non-pressure adhesion of a new adhesive restorative resin. Journal of Dental Research 1979; 58: 1364-1372.
51. Kanca J. Resin bonding to wet substrate. Quintessence International Journal 1992; 23: 39-41.
52. Kanca J. Effect of resin primer solvent and surface wetness on resin composite bond strength to dentin. American Journal of Dentistry 1992; 5: 213-215.
53. Gwinnett AJ. Moist versus dry dentin: its effect on shear bond strength. American Journal of Dentistry 1992; 5: 127-129.
54. Kanca J. A method for bonding to tooth structure using phosphoric acid as a dentine-enamel conditioner. Quintessence International Journal 1991; 22: 285-290.
55. Pashley DH. The effects of acid etching on the pulpodentin complex. The Open Dentistry Journal 1992; 17: 229-242.
56. Gwinnett AJ. Moist versus dry dentin: Its effect on shear bond strength. American Journal of Dentistry 1992; 5: 127-129.
57. Nakabayashi N, Kojima K, Masuhara E. The promotion of adhesion by the infiltration of monomers into tooth states. Journal of Biomedical Materials Research 1982; 16: 265-273.
58. Chappel RP, Cobb CM, Spencer P, Eick JD. Dentinal tubule anastomosis: a potential factor in adhesive bonding? Journal of Prosthetic Dentistry 1994: 72: 183-188.
59. Mjor IA, Nordhal I. The density and branching of dentinal tubules in human teeth. Archives of Oral Biology 1996; 41: 401-412.
60. Nakabayashi N, Pashley DH. Hybridization of dental hard tissues. Quintessence Publishing Company, Chicago, 1998.
61. Titley K, Chercnecky R, Chan A, Smith DC. The composition and ultrastructure of resin tags in etched dentin. American Journal of Dentistry 1995; 8: 224-230.
62. Van Meerbeek B, Inoue S, Pedigao J, et al. In Fundamentals of Operative Dentistry, 2nd Ed. Chicago: Quintessence Publishing Company; 2001.
63. Tay FR, Gwinnett AJ, Wei SH. The over wet phenomenon: an optical, micromorphological study of surface moisture in acid-conditioned, resin-dentin interface. American Journal of Dentistry 1996; 9: 43-48.
64. Ferrari M, Goracci G, Garcia-Godoy F. Bonding mechanism of three “one-bottle” systems to conditioned and unconditioned enamel and dentin. American Journal of Dentistry 1997; 10: 224-230.
65. Tay FR, Gwinnett AJ, Wei SHY. Structural evidence of a sealed tissue interface with total etch wet bonding technique, in vivo. Journal of Dental Research 1994; 73: 629-636.
66. Mason PN, Calabrese M, Graif L. Modified extrusion shear bond strength of the new 3M adhesive. Journal of Dental Research 1998; 77: 1239.
67. Toledano M, Osorio R, de Leonardi G, Rosales-Leal JI, Ceballos L, Cabrerizo-Vilchez MA. Influence of self-etching primer on the resin adhesion to enamel and dentin. American Journal of Dentistry 2001; 14: 205-210.
68. Inoue S, Van Meerbeek B, Vargas M, Yoshida Y, Lambrechts P, Vanherle G. Adhesion mechanism of self-etching adhesives. Italy: Grafiche Erredue; 2000.
69. Inoue S, Vargas MA, Abe Y, et al. Microtensile bond strength of eleven contemporary adhesives to enamel. American Journal of Dentistry 2003; 16: 329-334.
70. Inoue S, Vargas MA, Abe Y, et al. Microtensile bond strength of eleven contemporary adhesives to dentin. American Journal of Dentistry 2001; 3: 237-245.
71. Van Landuyt K, De Munck J, Snauwaert J, et al. Monomer-solvent phase separation in one-step self-etch adhesives. Journal of Dental Research 2005; 84: 183-188.
72. Tay FR, Pashley DH, Suh BI, Carvalho RM, Itthagarun A. Single-step adhesives are permeable membranes. Journal of Dentistry 2002; 30: 371-382.
73. Chan KM, Tay FR, King NM, Imazato S, Pashley DH. Bonding of mild self-etching primer/adhesives to dentin with thick smear layers. American Journal of Dentistry 2003; 16: 340-346.
74. Van Meerbeek B, Yoshida Y, Lambrechts P, Vanherle G. Mechanisms of bonding a resin-modified glass-ionomer adhesive to dentin. Journal of Dental Research 1998; 77: 911.
75. Van Meerbeek B, Yoshida Y, Inoue S, et al. Interfacial characterization of resin-modified glass-ionomers to dentin. Journal of Dental Research 2001; 80: 739.
76. Tay FR, Smales RJ, Ngo H, Wei SH, Pashley DH. Effect of different conditioning protocols on adhesion of a GIC to dentin. Journal of Adhesive Dentistry 2001; 3: 153-167.
77. Sugizaki J. The effect of the various primers on the dentin adhesion of resin composites-SEM and TEM observations of the resin-impregnated layer and adhesion promoting effect of the primers. Journal of Conservative Dentistry 1991; 34: 228.
78. Van Meerbeek B, Dhem A, Goret-Nicaise M, Braem M, Lambrechts P, Vanherle G. Comparative SEM and TEM examination of the ultra-structure of the resin-dentin interdiffusion zone. Journal of Dental Research 1993; 72: 495-501.
79. Jacobsen T, Ma R, Soderholm K-J. Dentin bonding through inter-penetrating network formation. Transactions of the Academy of Dental Materials 1994; 7: 45.
80. Fusayama T. Biological problems of the light-cured composite resin. Quintessence International Journal 1993; 24: 225-226.
81. Vaidyanathan J, Munisamy S, Vaidyanathan TK, Wan LR. Bis[2-(methacryloyloxy)-ethyl] phosphate as a self-etching primer. Ernest N. Morial Convention, 2008.
82. Zhang Y, Wang Y. The effect of hydroxyapatite presence on the degree of conversion and polymerization rate in a model self-etching adhesive. Academy of Dental Materials 2012; 28: 237-244.
83. Berger S, Muller E, Schnabelrauch M. Influence of methacrylate-containing surface modifiers on the mechanical properties of nano-hydroxyapatite/polylactide network composites. Materials Letters 2009; 63: 2714-2717.
84. Zhang Y, Wang Y. Improved degree of conversion of model self-etching adhesives through their interaction with dentine. Journal of Dentistry 2012; 40: 57-63.
85. Vuorinen AM, Dyer SR, Vallittu PK, Lassila LV. Bonding of composite resin to dentin using rigid rod polymer modified primers. Journal of Adhesive Dentistry 2010; 12: 175-182.
86. Dadsetan M, Giuliani M, Wanivenhaus F, Runge MB, Charlesworth JE, Yaszemski MJ. Incorporation of phosphate group modulates bone cell attachment and differentiation on oligo(polyethylene glycol) fumarate hydrogel. Acta Biomaterialia 2012; 8: 1430-1439.
87. Green J. A review of phosphorus-containing flame retardants. Journal of Fire Sciences 1996; 14: 353-366.
88. Hu Y, Song L. Nanocomposites with halogen and nonintumescent phosphorus flame retardant additives. In: Morgan AB, Wilkie CA, editors. Flame retardant polymer nanocomposites. Hoboken: John Wiley and Sons Incorporated; 2007.
89. Wang L, Su S, Chen D, Wilkie CA. Fire retardancy of bis[2-(methacryloyloxy)ethyl] phosphate modified poly(methyl methacrylate) nanocomposites containing layered double hydroxide and montmorillonite. Polymer Degradation and Stability 2009; 94: 1110-1118.
90. Thakur N, Kumar SA, Wagh DN, Das S, Pandey AK, Kumar SD, Reddy AVA. Matrix supported tailored polymer for solid phase extraction of fluoride from variety of aqueous streams. Journal of Hazardous Materials 2012; 201-202: 193-201.
91. Lopez-Garcia MC, Beebe DJ, Crone WC. Characterization of poly(isobornyl acrylate) as a construction material for microfluidic applications. Journal of Applied Polymer Science 2007; 105: 1894-1902.
92. Liu B, Fu Y, Ruan W, He Y, Wang X. Preparation of super-hydrophobic surfaces by using elastomer templates and UV-curable resin. Acta Polymerica Sinica 2008; 2: 155-160.
93. Huang Y. Studies on performance of ambient temperature curing silicon-containing methacrylate copolymer coatings. Paint and coatings industry 2005; 35: 12-15.
94. Xing B, Sun N, Li Y, Cheng J. Synthesis and application of high adhesion acrylate resin for cathodic electrodeposion coatings. Paint and coatings industry 2011; 41: 30-33.
95. Dervaux B, Camp WV, Renterghem LV, Filip E. Du Prez. Synthesis of poly(isobornyl acrylate) containing copolymers by atom transfer radical polymerization. Journal of Polymer Science 2008; 46: 1649-1661.
96. Kavousian A, Ziaee F, Nekoomanesh MH, Leamen MJ, Penlidis A. Determination of monomer reactivity ratios in styrene/2-ethylhexylacrylate copolymer. Journal of Applied Polymer Science 2004; 92: 3368-3370.
97. Khan AR, Yousufzai AHK. Free radical terpolymerization of methylmethacrylate 2 ethylhexylacrylate and acrylic acid. Journal of Scientific and Industrial Research 1989; 32: 222-224.
98. Datta C, Basu D, Banerjee D. Mechanical and dynamic mechanical studies of resol/vinyl acetate-2-ethylhexylacrylate/hexamethoxymethylmelamine interpenetrating network systems. Journal of Applied Polymer Science 2003; 90: 1765-1771.
99. Kar S, Banthia AK. Chain-extended epoxy-functionalised poly-(2-ethylhexylacrylate) as impact and adhesive modifier for epoxy resin. Plastics Rubber and Composites 2003; 32: 319-325.
100. Slimane SK, Roussel F, Maschke U. Miscibility and morphology of poly(ethylhexylacrylate)/liquid crystal blends prepared under different conditions. Journal of Polymer Science 2007; 45: 18-27.
101. Pashley DH, Sano H, Ciucchi B, Yoshiyama M, Carvalho RM. Adhesion testing of dentin bonding agents: A review. Dental Materials 1995; 11: 117-125.
102. Retief DH, Mandras RS, Russell CM, Denys FR. Extracted human vs. bovine teeth in laboratory studies. American Journal of Dentistry 1990; 3: 253-258.
103. Causton BE. In vitro assessment of dentin bonding agents. Proceedings of International Symposium on Adhesion, Its Theory and Practice in Restorative Dentistry, Special edition. London: Current Medical Literature Incorporated; 1987.
104. Oilo G, Olsson S. Tensile bond strength of dentin adhesives: A comparison of materials and methods. Dental Materials 1990; 6: 138-144.
105. Causton BE. Improved bonding of composite restorative to dentine. British Dental Journal 1984; 156: 93-95.
106. Stanford JW, Sabri Z, Jose S. A comparison of the effectiveness of dentin bonding agents. International Dental Journal 1985; 35: 139-144.
107. Tao L, Pashley DH. Shear bond strength to dentin: Effects of surface treatments, depth and position. Dental Materials 1988; 4: 371-378.
108. Burrow MF, Tagami J, Hosoda H. The long term durability of bond strengths to dentin. Bull Tokyo Med Dent Univ 1993; 40: 173-191.
109. Perinka L, Sano H, Hosoda H. Dentin thickness, hardness and Ca-concentration vs. bond strength of dentin adhesives. Dental Materials 1992; 8: 229-233.
110. Sano H, Shono T, Sonoda H, Takatsu T, Ciucchi B, Horner JA, Pashley DH. Tensile bond strength vs. surface area for dentin bonding - evaluation of a method using limited surface areas. Journal of Conservative Dentistry 1994; 37: 882-887.
111. Sano H, Ciucchi B, Matthews WG, Pashley DH. Tensile properties of mineralized and demineralized human and bovine dentin. Journal of Dental Research 1994; 73: 1205-1211.
112. Sano H, Takutsu T, Ciucchi B, Russell CM, Pashley DH. Tensile properties of resin-infiltrated demineralized dentin. Journal of Dental Research 1995; 74: 1093-1102.
113. Eick JD, Robinson SJ, ChappeIl RP, Cobb CM, Spencer P. The dentin surface - Its influence on dentin adhesion. Quintessence International Journal 1993; 24: 571-582.
114. Chappell RP, Schreiner RF, Glaros AG, Eick JD. Pilot study to determine sample size for micro-tensile testing. Journal of Dental Research 1997; 76: 38.
115. Schreiner RF, Chappell RP, Glaros AG, Eick JD. Microtensile testing of dentin adhesives. Dental Materials 1998; 14: 194-201.
116. Patierno JM, Rueggeberg FA, Anderson RW, Weller RN, Pashley DH. Push out strength and SEM evaluation of resin composite bonded to internal cervical dentin. Endodontics & Dental Traumatology 1996; 12: 227-236.
117. Dolan T.J., Preclude Failure: A Philosophy for Material Selection and Simulated Service Testing. Experimental Mechanics 1970; 10: 1-14.
118. Pashley DH. The evolution of dentin bonding from no-etch to total-etch to self-etch. Adhes Tech Sol 2002; 1: 1-7.
119. Munck JD, Landuyt KV, Peumans M, Poitevin A, Lambrechts P, Braem M, Meerbeek BV. A critical review of the durability of adhesion to tooth tissue: methods and results. Journal of Dental Research 2005; 84: 118-132.
120. Ghajari MF, Roshennejad R, Ghasemi A. Microtensile bond strength of fragment reattachment Vs. resin composite restoration in crown fractures. Research Journal of Biological Sciences 2007; 2: 682-686.
121. Sava CN, Dudea D, Bondor CI, ŞOANCĂ A, Colceriu L, Alb C. Influence of adhesives systems composition on dual-cured resin cements. Journal of Optoelectronics and Biomedical Materials 2009; 1: 359-365.
122. Mohan P. Bond strength evaluation of two resin cements with two adhesives and analysis of mode of failure. Indianapolis: Indiana University School of Dentistry; 2009.
123. Dagostin A, Ferrari M. In vivo bonding mechanism of an experimental dual-cure enamel-dentin bonding system. American Journal of Dentistry 2001; 14: 105-108.
124. Viotti RG, Kasaz A, Pena CE, Alexandre RS, Arrais CA, Reis AF. Microtensile bond strength of new self-adhesive luting agents and conventional multistep systems. Journal of Prosthetic Dentistry 2009; 102: 306-312.
125. Walter R, Miguez PA, Pereira PN. Microtensile bond strength of luting materials to coronal and root dentin. Journal of Esthetic and Restorative Dentistry 2005; 17: 165-171.
126. Kahnamouei MA, Mohammadi N, Navimipour EJ, Shakerifar M. Push-out bond strength of quartz fibre posts to root canal dentin using total-etch and self-adhesive resin cements. Medicina Oral Patologia Oral Cirugia Bucal 2012; 17: 337-344.
127. Mak YF, Lai SCN, Cheung GSP, Chan AWK, Tay FR, Pashley DH. Microtensile testing of resin cements to dentine and an indirect resin composite. Dental Materials 2002; 18: 609-621.
128. Bitter K, Meyer-Lueckel H, Priehn K, Kanjuparambil JP, Neumann K, Kielbassa AM. Effect of luting agent and thermocycling on bond strengths to root canal dentin. International Endodontic Journal 2006; 39: 809-818.
129. Zhang L, Huang L, Xiong Y, Fang M, Chen JH, Ferrari M. Effect of post-space treatment on retention of fiber posts in different root regions using two self-etching systems. European Journal of Oral Sciences 2008; 116: 280-286.
130. Goracci C, Tavares AU, Fabianelli A, Monticelli F, Raffaelli O, Cardoso PC, et al. The adhesion between fiber posts and root canal walls: comparison between microtensile and push-out bond strength measurements. European Journal of Oral Sciences 2004; 112: 353-361.
131. Dimitrouli M, Geurtsen W, Luhrs AK. Comparison of the push-out strength of two fiber post systems dependent on different types of resin cements. Clinical Oral Investigations 2012; 16: 899-908.
132. Huber L, Cattani-Lorente M, Shaw L, Krejci I, Bouillaguet S. Push-out bond strengths of endodontic posts bonded with different resin-based luting cements. American Journal of Dentistry 2007; 20: 167-72.
133. Marco S, Ivanovic C, Elisa M, Maria CC, Marco F. Sealing ability and microscopic aspects of a self-adhesive resin cement used for fiber post luting into root canals. International Dentistry SA 2006; 8: 24-30.
134. Luca BP, Giovanni C, Pio B, Massimo G. Adhesive post-endodontic restorations with fiber posts: push-out tests and SEM observations. Dental Materials 2002; 18: 596-602.
135. Hooshmand T, Rostami G, Behroozibakhsh M, Fatemi M, Keshvad A, van Noort R. Interfacial fracture toughness of different resin cements bonded to a lithium disilicate glass ceramic. Journal of Dentistry 2012; 40: 139-145.
136. Eugenio S, Sivakumar M, Vilar R, Rego AM. Characterisation of dentin surfaces processed with KrF excimer laser radiation. Biomaterials 2005; 26: 6780-6787.
137. Wang Y, Yao X, Parthasarathy R. Characterization of interfacial chemistry of adhesive/dentin bond using FTIR chemical imaging with univariate and multivariate data processing. Journal of Biomedical Materials Research 2009; 91: 251-262.
138. Spencer P, Wang Y, Katz JL, Misra A. Physicochemical interactions at the dentin/adhesive interface using FTIR chemical imaging. Journal of Biomedical Optics 2005; 10: 031104.
139. Abo T, Asmussen E, Uno S, Tagami J. Short- and long-term in vitro study of the bonding of eight commercial adhesives to normal and deproteinized dentin. Acta Odontologica Scandinavica 2006; 64: 237-243.
140. Thompson VP, Edler TL, Davis GD. XPS Characterization of dentin and dentin treated with bonding conditioners. The Journal of Adhesion 1992; 39: 157-171.
141. Dogan A, Gokduman K, Bolay S, Severcan F. Evaluation of in-office bleaching on enamel and dentine: An FTIR Study. METU research 2004.
142. Jang J, Jeong YK. Synthesis and flame-retardancy of UV-curable methacryloyloxy ethyl phosphates. Fibers and Polymers 2008; 9: 667-673.
143. Eugenio S, Sivakumar M, Vilar R. Surface treatment of human dentin by KrF Laser. Materials Science Forum 2006; 514-516: 1044-1048.
144. Murphy, H, Papakonstantinou, P and Okpalugo, TIT. Raman study of multiwalled carbon nanotubes functionalized with oxygen groups. Journal of Vacuum Science & Technology 2006; 24: 715-720.
145. Tanizawa Y, Suzuki T. X-ray photoelectron spectroscopy study on chemical states of fluoride in bovine dentine treated with NaF. Journal of the Chemical Society, Faraday Transactions 1993; 89: 2901-2906.
146. Babensee JE, Rana N. S. Sodhi, Sefton MV. X-Ray photoelectron spectroscopy (XPS) surface analysis of HEMA-MMA microcapsules. Journal of Biomaterials Science, Polymer Edition 1997; 8: 655-665.
147. Omae M, Shinnou Y, Tanaka K, Abo T, Nakata T, Suzuki K, Hatsuoka Y, Iwata N, Yoshikawa K, Nishitani Y, Yamamoto K, Yoshiyama M. XPS analysis of the dentin irradiated by Er: YAG laser. Dental Materials Journal 2009; 28: 471-476.
148. Goldberg AJ, Advincula MC, Komabayashi T, Patel PA, Mather PT, Goberman DG, Kazemi RB. Polypeptide-catalyzed biosilicification of dentin surfaces. Journal of Dental Research 2009; 88: 377-381.
149. Chu LQ, Zou XN, Knoll W, Forch R. Thermosensitive surfaces fabricated by plasma polymerization of N,N-diethylacrylamide. Surface & Coatings Technology 2008; 202: 2047-2051.
150. Zhou M, Wu C, Edirisinghe PD, Drummond JL, Hanley L. Organic overlayer model of a dental composite analyzed by laser desorption postionization mass spectrometry and photoemission. Journal of Biomedical Materials Research 2006; 77: 1-10.
151. Petrou I, Heu R, Stranick M, Lavender S, Zaidel L, Cummins D, Sullivan RJ, Hsueh C, Gimzewski JK. A breakthrough therapy for dentin hypersensitivity: how dental products containing 8% arginine and calcium carbonate work to deliver effective relief of sensitive teeth. Journal of Clinical Dentistry 2009; 20: 23-31.
152. Yahya NA, Lui JL, Chong KW, Lim CM, Kasim NHA, Radzi Z. Effect of luting cement to push-out bond strength of fibre reinforced post. The Annals of Dentistry University of Malaya 2008; 15: 11-19.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65230-
dc.description.abstract邁入二十一世紀,牙科材料的研發推陳出新,秉持著使用簡單、方便又有效的理念原則,日新月異的技術與方法不斷的被研究出來並應用至臨床牙科。根管治療完成後,材料的選擇更是多元,本研究團隊長期以來著重於根管治療後,根柱與黏著系統材料的研發,先前已創新發展出獨特的玻璃纖維根柱(glass fiber post)與樹脂黏著劑(resin cement),其黏著強度不遜於其它市售材料,唯樹脂黏著劑所搭配使用之黏合劑為市售商品OptiBond Solo Plus,故本實驗將以研發牙本質黏合劑(bonding agent)為主,搭配使用先前的自製材料,以期將牙本質(dentin)、玻璃纖維根柱與樹脂黏著劑形成一體(monoblock),相信未來在臨床時,各方面之鍵結強度與效果將會大幅提昇。
本實驗使用Bis-GMA(Bisphenol-glycidyl-methacrylate)與TEGDMA(triethylene glycol dimethacrylate)作為樹脂基質(resin matrix),並添加少量之IBOA+EHA(10 wt%)合成樹脂黏著劑,而與牙本質接觸面所搭配使用之樹脂黏合劑(bonding agent)乃是相同成分的樹脂基質加入固定含量的HEMA與乙醇,並添加比例不一(30%、35%、40%)的BMEP (Bis[2-(methacryloyloxy)-ethyl]phosphate)所合成。利用微拉伸測試法、推離鍵結測試法與破裂韌性強度測試法量化與牙本質間之鍵結,結果顯示,使用BMEP(35%)之黏合效果其強度值(34.53 MPa、28.01 MPa、309.8 J/M2)可與四種市售材料(NX3、Variolink II、Unicem與Panavia F)相比甚至有所超越之。實驗驗證方面利用傅立葉轉換紅外線光譜儀(FTIR)、X射線電子光譜儀(XPS)觀察破裂面塊材與純樹脂黏著劑塊材,發現兩者之光譜圖形相同,可判斷破裂面塊材上確實有樹脂黏著劑的殘留,由此進行細微的研究分析,並得知相關之官能基與鍵結的化學性質。
zh_TW
dc.description.abstractIn the 21st century, the research and development for dental materials have innovated continuously. Based on the principle of simple, convenient and effective, technologies and methods progress to change with each passing day and applied to clinical dentistry. The choice of materials is more diversified after endodontic therapy. Our team have made efforts in developing post and adhesive system materials for a long time and we have developed distinctive glass fiber post and resin cement. Their bond strength was not inferior to other commercial adhesive materials. However, the high bond strength of resin cement to root canal dentin has to use the commercial product Optibond Solo Plus as bonding agent. Therefore, the major aim of this study was to create a new bonding agent with the use of previously-made materials. Hoping to create a monoblock including dentin, glass fiber post and resin cement. We believe that all aspects of the bond strength and the effect will be improved significantly for clinical application in the future.
In this study, Bis-GMA (Bisphenol-glycidyl-methacrylate) and TEGDMA (triethylene glycol dimethacrylate) were used as the resin matrix. To compose the IE-cement, a small amount of IBOA+EHA (10 wt%) were added. The bonding agent which contact dentin was synthesized by using the same composition of resin matrix. A fixed content of HEMA and ethanol, and different ratio of BMEP (Bis[2-(methacryloyloxy)-ethyl]phosphate) were added. We measured the bond strength between dentin and resin cement by using microtensile bond strength test, push-out bond strength test and fracture toughness test. The highest bond strength among all groups was measured for BMEP (35%), which was better than the four commercial available materials (NX3, Variolink II, Unicem and Panavia F). Analyses of the fracture modes of fracture toughness and pure cement were performed using Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The spectra analysis demonstrate that the similarity of fracture to the pure resin cement, indicating that the fracture surface were covered with resin cement. We can know the information of related functional group and the chemical properties of the bonding by using this detailed analysis.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:31:24Z (GMT). No. of bitstreams: 1
ntu-101-R99450017-1.pdf: 8737382 bytes, checksum: 044e9167ced54a3c31eb0e5dc661a8ff (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents誌謝 I
摘要 II
Abstract IV
目錄 VI
表目錄 X
圖目錄 XI
第一章 前言 1
第二章 文獻回顧 4
2.1 牙齒的結構與功能 4
2.1.1 牙釉質(Enamel) 4
2.1.2 牙本質(Dentin) 5
2.1.3 牙髓(Pulp) 7
2.1.4 牙骨質(Cementum) 8
2.2 根柱發展與牙本質之黏著 8
2.2.1 根管治療與根柱 8
2.2.2 牙本質黏著劑之源起 9
2.2.3 黏著原理 11
2.2.4 影響牙齒黏著的因素 12
2.3 牙本質黏合劑的發展與種類 15
2.3.1 第一代牙本質黏合劑 15
2.3.2 第二代牙本質黏合劑 16
2.3.3 第三代牙本質黏合劑 17
2.3.4 第四代牙本質黏合劑 19
2.3.5 第五代牙本質黏合劑 23
2.3.6 第六代牙本質黏合劑 24
2.3.7 第七代牙本質黏合劑 25
2.3.8 樹脂添加玻璃離子聚合黏土 26
2.4 牙本質黏合劑成份與牙科用材料 27
2.4.1 調節劑(Conditioner) 27
2.4.2 底劑(Primer) 29
2.4.3 黏著性樹脂(Adhesive resin) 30
2.4.4 其它添加物(Other fillers) 32
2.4.5 二[甲基丙烯醯氧乙基]磷酸 33
2.4.6 丙烯酸異冰片酯 35
2.4.7 丙烯酸-2-乙基己酯 36
2.5 黏著強度測試方法 38
2.5.1 微拉伸鍵結強度測試法 39
2.5.2 推離鍵結強度測試法 41
2.5.3 破裂強度測試法 43
第三章 材料與方法 46
3.1 實驗材料 46
3.2 實驗儀器 54
3.3 實驗方法 55
3.3.1 樹脂黏著劑(resin cement)製備 55
3.3.2 製備含不同比例BMEP之樹脂黏合劑 (bonding agents) 56
3.3.3 黏著強度測試牙齒樣品之製備 57
3.3.3.1 微拉伸鍵結強度測試牙齒樣品之製備 59
3.3.3.2 推離鍵結強度測試牙齒樣品之製備 61
3.3.3.3 破裂韌性強度測試牙齒-黏著劑塊材製備 63
3.3.4 黏著強度測試 66
3.3.4.1 微拉伸鍵結強度測試 66
3.3.4.2 推離鍵結強度測試 67
3.3.4.3 破裂韌性強度測試 68
3.3.4.4 數據分析 69
3.3.5 破裂面韌性強度測試後塊材分析 70
3.3.5.1 傅立葉轉換紅外線光譜儀(FT-IR) 70
3.3.5.2 X射線光電子光譜儀 71
第四章 結果 72
4.1 微拉伸鍵結強度測試 72
4.2 推離鍵結強度測試 73
4.3 破裂韌性強度測試 74
4.4 傅立葉轉換紅外線光譜儀(FT-IR) 76
4.5 X射線光電子光譜儀(XPS) 78
第五章 討論 88
5.1 微拉伸鍵結測試與作用機制 88
5.2 推離鍵結強度測試 94
5.3 破裂韌性強度測試 97
5.4 BMEP牙本質黏合劑與IE-cement之黏合強度 99
5.5 破裂韌性強度測試後塊材分析(FTIR、XPS) 100
第六章 結論 104
參考文獻 106
附錄 125
dc.language.isozh-TW
dc.subject牙本質zh_TW
dc.subject牙本質黏合劑zh_TW
dc.subject樹脂黏著劑zh_TW
dc.subject樹脂複合材zh_TW
dc.subjectcomposite resin materialen
dc.subjectdentin bonding agenten
dc.subjectresin cementen
dc.subjectdentinen
dc.title研發新型樹脂黏著劑以增強與牙本質之鍵結強度zh_TW
dc.titleDevelopment of new resin cement to increase the bond strength with dentinen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王大銘(Da-Ming Wang),張哲政(Che-Chen Chang)
dc.subject.keyword樹脂複合材,牙本質,樹脂黏著劑,牙本質黏合劑,zh_TW
dc.subject.keywordcomposite resin material,dentin,resin cement,dentin bonding agent,en
dc.relation.page129
dc.rights.note有償授權
dc.date.accepted2012-07-30
dc.contributor.author-college牙醫專業學院zh_TW
dc.contributor.author-dept口腔生物科學研究所zh_TW
顯示於系所單位:口腔生物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
8.53 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved