Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65223
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳秋麟
dc.contributor.authorTso-Sheng Chanen
dc.contributor.author詹作晟zh_TW
dc.date.accessioned2021-06-16T23:30:52Z-
dc.date.available2013-08-09
dc.date.copyright2012-08-09
dc.date.issued2012
dc.date.submitted2012-07-27
dc.identifier.citation[1] G. B. Joung and B. H. Cho, “An energy transmission system for an artificial heart using leakage inductance compensation of transcutaneous transformer,” IEEE Trans. Power Electronics, vol. 13, no. 6, pp.1013-1022, Nov. 1998.
[2] J. Diaz, J. M. Lopera, A. M. Pernia, F. Nuno, J. A. Martinez, J. V. Comas, and L. Galletti, “A micropump for pulmonary blood flow regulation,” IEEE Industrial Electronics Magazine, vol. 1, no.1, pp.39-44, Spring 2007.
[3] S. Arai, H. Miura, F. Sato, H. Matsuki, and T. Sato, “Examination of circuit parameters for stable high efficiency TETS for artificial hearts,” IEEE Trans. Magnetics, vol. 41, no. 10, pp.4170-4172, Oct. 2005.
[4] H. Matsuki, Y. Yaiiiakata, N. Chubachi, S. I. Nitta, and H. Hashiinoto, “Transcutaneous DC-DC converter for totally implantable artificial heart using synchronous rectifier,” IEEE Trans. Magnetics, vol. 32, no. 5, pp.5118-5120, Sept. 1996.
[5] T. Takura, H. Ishiai, F. Sato, H. Matsuki, and T. Sato, “Basic evaluation of signal transmission coil in transcutaneous magnetic telemetry system for artificial hearts,” IEEE Trans. Magnetics, vol. 41, no. 10, pp.4173-4175, Oct. 2005.
[6] C. Niu, H. Hao, L. Li, B. Ma, and M. Wu, “The transcutaneous charger for implanted nerve stimulation device,” in Proc. IEEE International Conference EMBS 2006, pp.4941-4944.
[7] K. Jung, Y. H. Kim, E. J. Choi, H. J. Kim, and Y. J. Kim, “Wireless power transmission for implantable devices using inductive component of closed-magnetic circuit structure,” IEEE International Conference MFI 2008, pp.272-277.
[8] K. W. E. Cheng and Y. Lu, “Development of a contactless power converter,” in Proc. IEEE ICIT’02, vol. 2, pp.786-791.
[9] D. A. G. Pedder, A. D. Brown, and J. A. Skinner, “A contactless electrical energy transmission system,” IEEE Trans. Industrial Electronics, vol. 46, no. 1, pp.23-30, Feb. 1999.
[10] R. Mecke and C. Rathge, “High frequency resonant inverter for contactless energy transmission over large air gap,” IEEE Power Electronics Specialists Conference 2004, vol. 3, pp.1737-1743.
[11] C. S. Wang, G. A. Covic, and O. H. Stielau, “Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems,” IEEE Trans. Industrial Electronics, vol. 51, no. 1, pp.148-157, Feb. 2004.
[12] Y. Jang and M. M. Jovanovic, “A contactless electrical energy transmission system for portable-telephone battery chargers,” IEEE Trans. Industrial Electronics, vol. 50, no. 3, pp.520-527, Jun. 2003.
[13] G. G. Kim, D. H. Seo, J. S. You, J. H. Park, and B. H. Cho, “Design of a contactless battery charger for cellular phone,” IEEE Trans. Industrial Electronics, vol. 48, no. 6, pp.1238-1247, Dec. 2001.
[14] X. Liu and S. Y. Hui, “Optimal design of a hybrid winding structure for planar contactless battery charging platform,” IEEE Trans. Power Electronics, vol. 23, no. 1, pp.455-463, Jan. 2008.
[15] H. Miura, S. Arai, Y. Kakubari, F. Sato, H. Matsuk and T. Sato, “Improvement of the transcutaneous energy transmission system utilizing ferrite cored coils for artificial hearts,” IEEE Trans. Magnetics, vol. 42, no. 10, pp.3578-3580, Oct. 2006.
[16] L. Zhao, C. F. Foo, and K. J. Tseng, “A new structure transcutaneous transformer for artificial heart system,” IEEE Trans. Magnetics, vol. 35, no. 5, pp.3550-3552, Sept. 1999.
[17] H. G. Lim, D. W. Kim, M. W. Lee, J. W. Lee, S. H. Woo, M. W. Kim, E. S. Jung, K. W. Seong, J. H. Lee, and J. H. Cho, “Intelligent pillow type wireless charger for fully implantable middle ear hearing device with a function of electromagnetic emission reduction,” IEEE Second International Symposium on Intelligent Information Technology Application, vol. 3, 2008, pp. 835-838.
[18] C. S. Wang, O. H. Stielau, and G. A. Covic, “Design considerations for a contactless electric vehicle battery charger,” IEEE Trans. Industrial Electronics, vol. 52, no. 5, pp.1308-1314, Oct. 2005.
[19] B. Choi, J. Nho, H. Cha, T. Ahn, and S. Choi, “Design and implementation of low-profile contactless battery charger using planar printed circuit board windings as energy transfer device,” IEEE Trans. Industrial Electronics, vol. 51, no. 1, pp.140-147, Feb. 2004.
[20] W. H. Moore, D. P. Holschneider, T.K. Givrad, and J.-M.I. Maarek, “Transcutaneous RF-powered implantable minipump driven by a class-E transmitter,” IEEE Trans. Biomedical Engineering, vol. 53, no. 8, pp.1705-1708, Aug. 2006.
[21] A. Ghahary and B. H. Cho, “Design of a transcutaneous energy transmission system using a series resonant converter,” IEEE Trans. Power Electronics, vol.7, no.2, pp.261-269, Apr. 1992.
[22] J. Diaz, J. M. Lopera, M. J. Prieto, and A. Martin, J. A. Esteban, “Transcutaneous battery charger using a half bridge SRC controlled by resonant current phase,” in Proc. IEEE IECON 2002, vol. 4, pp.2838-2843.
[23] S. Valtchev, B. Borges, K. Brandisky, and J. B. Klaassens, “Resonant contactless energy transfer with improved efficiency,” IEEE Trans. Power Electronics, vol. 24, no. 3, pp.685-699, Mar. 2009.
[24] T. Yang, C. Zhao, J. Zhang, and D. Chen, “Power loss and efficiency of Transcutaneous Energy Transmission System with Class-E power amplifier at any duty ratio,” in Proc. IEEE ISSCS 2009, pp.1-4.
[25] G. A. Kendir, W. Liu, G. Wang, M. Sivaprakasam, R. Bashirullah, M. S. Humayun, and J. D. Weiland, “An optimal design methodology for inductive power link with class-E amplifier,” IEEE Trans. Circuits Syst., vol. 52, no. 5, pp.857-866, May 2005.
[26] G. Wang, W. Liu, M. Sivaprakasam, and G. A. Kendir, “Design and analysis of an adaptive transcutaneous power telemetry for biomedical implants,” IEEE Trans. Circuits Syst., vol. 52, no. 10, pp. 2109-2117, Oct. 2005.
[27] T. D. Dissanayake, , D. M. Budgett, P. Hu, L. Bennet, ,S. Pyner, L. Booth, S. Amirapu, Y. Wu, and S. C. Malpas, “A novel low temperature transcutaneous energy transfer system suitable for high power implantable medical devices; performance and validation in sheep', Journal of Artificial Organs, vol.34, no. 5, pp.160-167, May 2010.
[28] Q. Chen, S. C. Wong, C. K. Tse, and X. Ruan, “Analysis, design and control of a transcutaneous power regulator for artificial heart,” IEEE Trans. Biomedical Circuits Syst., vol. 3, no.1,0 pp.23-31, Jan. 2009.
[29] U. K. Madawala and D. J. Thrimawithana, “A single controller for inductive power transfer systems,” in Proc. IEEE IECON 2009, pp.109-113.
[30] P. Si, A. P. Hu, S. Malpas, and D. Budgett, “A frequency control method for regulating wireless power to implantable devices,” IEEE Trans. Biomedical Circuits Syst., vol. 2, no. 1, pp.22-29, Mar. 2008.
[31] 朱育賢,「LLC諧振轉換器高效率設計」,國立臺灣大學電子工程學研究所碩士論文,2008年6月
[32] T. H. Nishimura, K. Hirachi, Y. Maejima, K. Kuwana and M. Saito, “Characteristics of a novel energy transmission for a rechargeable cardiac pacemaker by using a resonant DC-DC converter,” IEEE IECON 1993, vol. 2, pp.875-880.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65223-
dc.description.abstract本論文提出一個一次側控制方式之低功率無線電能傳輸系統,在此無線電能傳輸系統一次側與二次側電路之間不需有任何導線連接。此一次側控制方式實施在無線電能傳輸系統中以調節傳輸電能並且二次側端不需要額外的調節電能電路,一個充電保護電路被嵌入於無線電能傳輸系統之二次側端並且監視充電電流與電壓,以保護充電電池受到過大的充電電流或電壓。利用具有零電壓切換功能之LLC諧振式電源轉換器和E類功率放大器,以最小化因為漏電感所造成的電能傳輸耗損。依據實驗結果,二次側的充電電池被灌輸一個穩定的電流在電流模式下,並且當電池電壓接近4.1伏特時,充電電流會降低並轉為電壓模式。實驗結果顯示,在各種的空氣間隙的情況下無線電能傳輸系統都能達成一次側控制,無線電能傳輸系統具LLC諧振式電源轉換器電流模式下整體電能傳輸效率在33.5 % 和 54.1 % 之間,而無線電能傳輸系統具E類功率放大器電流模式下整體電能傳輸效率在30 % 和 66.2 % 之間,二次側充電保護電路的電能轉換為86.5 %,並且當無線電能傳輸系統沒有傳輸電能時,二次側充電保護電路的靜態電流為20μ安培。zh_TW
dc.description.abstractThis dissertation presents a low power wireless energy transmission system (WETS) with the primary side control method. The WETS has no physical wire connection required between the primary and secondary-side circuits. The primary side control method implemented in the WETS does not require extra space in the secondary side to regulate transmission energy. A charging protection is embedded within the secondary side to monitor the charging current and battery voltage, and to protect the battery against over-charging current or voltage. LLC resonant converter and class-E power amplifier structures with zero voltage switching are utilized to minimize transmission loss due to leakage inductance. According to experimental results, the secondary side battery is fed a stable charging current in current mode and low current in voltage mode where the battery voltage reached approximately 4.1V. The results show that the WETS achieved primary side control in all air-gap conditions. The overall efficiency of the WETS with LLC resonant converter is between 33.5 % and 54.1 %, and that of the class-E amplifier is between 30 % and 66.2 % when operating in the current mode. The efficiency of the secondary-side protection circuit is 86.5 %, and the quiescent current of secondary-side protection circuit is 20μA when the WETS does not work.en
dc.description.provenanceMade available in DSpace on 2021-06-16T23:30:52Z (GMT). No. of bitstreams: 1
ntu-101-D94943006-1.pdf: 2911658 bytes, checksum: 1c6c0888c81ebac70e6e70058e691961 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsABSTRACT (Chinese)……………………………………………………………….I
ABSTRACT………………………………………………………………………….II
TABLE OF CONTENTS…………………………………………………………...IV
LIST OF FIGURES………………………………………………………………..VII
LIST OF TABLES…………………………………………………………………..XI
1. Introduction………………………………………………………………………1
1.1. Background…………………………………………………………………1
1.2. Movivation………………………………………………………………….3
1.3. Dissertation Overview………………………………………………………5
2. Wireless Energy Transmission System………………………………………….7
2.1. Basics of WETS…………………………………………………………….7
2.1.1. Feedback Method……………………………………………………...9
2.2. Proposed Wireless Energy Transmission System………………………….13
2.2.1. Limiation of Secondary Side…………………………………………13
2.2.2. Primary Side Power Converter……………………………………….14
2.2.3. Primary Side Control Method………………………………………..15
2.3. Summary…………………………………………………………………..17
3. LLC Resonant Converter………………………………………………………18
3.1. Power Converter…………………………………………………………...18
3.2. Operation of LLC Resonant Converter……………………………………21
3.3. Circuit Implementation……………………………………………………31
3.3.1. Inductive Power Transformer………………………………………...31
3.3.2. Control Unit…………………………………………………………..33
3.3.3. Circuit Simulation……………………………………………………33
3.4. Summary…………………………………………………………………..35
4. Class-E Power Amplifier………………………………………………………..37
4.1. Basic Operation of Class-E Power Amplifier……………………………...37
4.2. Circuit Implementation……………………………………………………43
4.2.1. Inductive Power Transformer………………………………………...43
4.2.2. Control Unit…………………………………………………………..45
4.2.3. Circuit Simulation……………………………………………………46
4.3. Summary…………………………………………………………………..48
5. Primary Side Control Method………………………………………………….49
5.1. Secondary Side Charging Protection Circuit………………………………52
5.1.1. Over Voltage Protection Circuit……………………………………53
5.1.2. Over Current Protection Circuit……………………………………56
5.2. Primary Side Control Circuit……………………………………………58
5.3. Overall WETS Simulation…………………………………………………61
5.3.1. Current Mode…………………………………………...……………61
5.3.2. Voltage Mode…………………………………...……………………64
5.4. Summary…………………………………………………………………..65
6. Experiments and Results……………………………………………………….66
6.1. Control Circuit Experiment……………………………………………...66
6.1.1. Secondary Side Circuit……………………………………………….66
6.1.2. Primary Side Circuit…………………………………….……………68
6.2. WETS Charging Experiment………………………………………………71
6.2.1. LLC Resonant Converter…………………………………………….73
6.2.2. Class-E Power Amplifier…………………………………………….75
6.3. Summary…………………………………………………………………..80
7. Conclusions……………………………………………………………………...82
7.1. Dissertation Summary……………………………………………………..82
7.2. Future Work………………………………………………………………84
References…………………………………………………………………………...85
dc.language.isoen
dc.subject零電壓切換zh_TW
dc.subject無線電能傳輸zh_TW
dc.subject一次側控制zh_TW
dc.subjectLLC 諧振zh_TW
dc.subjectE類功率放大器zh_TW
dc.subjectwireless energy transmissionen
dc.subjectZVSen
dc.subjectclass-E power amplifieren
dc.subjectLLC resonanceen
dc.subjectthe primary side controlen
dc.title一次側控制之無線電能傳輸系統zh_TW
dc.titleWireless Energy Transmission System with Primary Side Control Methoden
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree博士
dc.contributor.oralexamcommittee潘晴財,劉昌煥,羅有綱,邱煌仁,林志隆
dc.subject.keyword無線電能傳輸,一次側控制,LLC 諧振,E類功率放大器,零電壓切換,zh_TW
dc.subject.keywordwireless energy transmission,the primary side control,LLC resonance,class-E power amplifier,ZVS,en
dc.relation.page87
dc.rights.note有償授權
dc.date.accepted2012-07-30
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
2.84 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved