請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65219
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王維新(Way-Seen Wang) | |
dc.contributor.author | Chih-Fan Huang | en |
dc.contributor.author | 黃致凡 | zh_TW |
dc.date.accessioned | 2021-06-16T23:30:36Z | - |
dc.date.available | 2015-08-01 | |
dc.date.copyright | 2012-08-01 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-07-30 | |
dc.identifier.citation | [1] I. Andonovic, and D. Uttamchandnni, Principles of Modern Optics Systems, Chap. 19, Artech House, 1989.
[2] R. G. Hunsperger, Integrated Optics: Theory and Technology 5th Ed., Springer, 2002. [3] T. Pfau, R. Peveling, J. Hauden, N. Grossard, H. Porte, Y. Achiam, S. Hoffmann, S.K. Ibrahim, O. Adamczyk, S. Bhandare, D. Sandel, M. Porrmann, and R. Noé, “Coherent digital polarization diversity receiver for real-time polarization-multiplexed QPSK transmission at 2.8 Gb/s, IEEE Photon. Technol. Lett., vol. 19, no.24, pp.198801990, Dec. 2007. [4] S. Gupta, N. Calabretta, M. Presi, G. Contestabile, A. Wonfor, R. Gangopadhyay, and E. Ciaramella, “Operational equivalence of self-switching in MZI and nonlinear polarization switches based on SOAs,” IEEE J. Sel. Topics Quantum Electron, vol. 14, no. 3, pp. 779-788, May/Jun. 2008. [5] R. Ulrich, “Polarization stabilization on single-mode fiber,” Appl. Phys. Lett., vol. 35, no. 11, pp.840-842, 1979. [6] M. Johnson, “In-line fiber-optical polarization transformer,” Appl. Opt., vol. 18, no. 9, pp. 840-842, 1979. [7] P. Granestrand and L. Thylen, ”Active stabilization of polarization on a single-mode fiber,” Electron. Lett., vol. 20, no. 9, pp.365-366, 1984. [8] H. Honmous, S. Yamazaki, K. Emura, R. Ishikawa, I. Mito, M. Shikada, and K. Minemura, “Stabilisation of heterodyne receiver sensitivity with automatic polarisation control system,” Electron. Lett., vol.22, no. 22, pp. 1181-1182. 1986. [9] H. C. Lefevre, “Single-mode fiber fractional wave devices and polarisation controllers,” Electron. Lett. vol. 16, no. 20, pp.778-780, 1980. [10] T. Okoshi, Y. H. Cheng, and K. Kikushi, “New polarisation-control scheme for optical heterodyne receiver using two Faraday rotators,” Electron. Lett., vol. 21, no. 18, pp. 787-788, 1985. [11] T. Imai, K. Nosu, and H. Yamagushi, “Optical polarisation control utilizing an optical heterodyne detection scheme,” Electron. Lett., vol.21, no. 2, pp. 52-53, 1985. [12] G. R. Walker, and N. G. Walker, “Rugged all-fibre endless polarisation controller,” Electron. Lett., vol.24, no.22, pp. 1353-1354, 1988. [13] U. Hilbk, T. Hermes, P. Meissner, C. Jacumeit, R. Stentel, G.. Unterborsch, “First system experiments with a monolithically integrated tunable polarization diversity heterodyne receiver OEIC on InP,” IEEE Photonics Technol. Lett., vol. 7, no. 1, pp. 129-131, Jan. 1995. [14] R. C. Alferness, “Efficient waveguide electro-optic TE-TM mode converter/wavelength filter,” Appl. Phys. Lett., vol.36, no.7, pp. 513-515, 1980. [15] B. Koch, A. Hidayat, H. Zhang, V. Mirvoda, M. Lichtinger, D. Sandel, and R. Noé, “Optical endless polarization stabilization at 9 krad/s with FPGA-based controller,” IEEE Phton. Technol. Lett., vol. 20, no. 12, Jun. 2008. [16] W. H. Hsu, K. C. Lin, J. Y. Li, Y. S. Wu, and W. S. Wang, “Polarization splitter with variable TE-TM mode converter using Zn and Ni codiffused LiNbO3 waveguides,” IEEE J. Sel. Topics Quantum Electron., vol. 11, no. 1, pp. 271-277 Jan. / Feb. 2005. [17] P. K. Wei and W. S. Wang, “An optical TE-TM mode splitter on lithium niobate using Ti, Ni, and MgO diffusions,” IEEE Photon. Technol. Lett., vol. 6, no.2, pp. 245-248, Feb. 1994 [18] Y. P. Liao, D. J. Chen, R. C. Lu, and W. S. Wang, “Nickel-diffused lithium niobate optical waveguide with process-dependent polarization,” IEEE Photon. Technol. Lett., vol. 8, no. 4, pp. 548-550, Apr. 1996. [19] W. H. Huang and W. S. Wang, “Gallium in-diffusion for the fabrication of lithium niobate optical waveguides,” IEEE Photon. Technol. Lett., vol. 19, no. 20, pp. 1679-1681, Oct. 15, 2007. [20] A.Loi, G.. Hay, R. M. De La Rue, and J. M. Winfield, “Proton-exchanged LiNbO3 waveguide: the effects of post-exchange annealing and buffered melts as determined by infrared spectroscopy, optical waveguide measurements, and hydrogen isotropic exchange reactions,” J. Lightw. Technol., vol. 7, no. 6, pp. 911-919, 1989. [21] J. R. Carruthers, I. P. Kaminow, and L. W. Stulz, ”Diffusion kinetics andoptical waveguiding properties of outdiffused layers in lithium niobate andlithium tantalite,” Appl. Opt., vol. 13, no. 10, pp. 2333-2342, 1974. [22] J. Noda, M. Fukuma, and A. Saito, “Effect of Mg diffusion on Ti-diffused LiNbO3 waveguide,” J. Appl. Phys., vol. 49, no. 6, pp. 3150-3154, 1978. [23] C. S. Lau, P. K. Wei, C. W. Su, and W. S. Wang, “Fabrication ofmagnesium-oxide-induced lithium outdiffusion waveguides,” IEEE Photon.Technol. Lett., vol. 4, no. 8, pp. 872-875, Aug. 1992. [24] R. V. Schmidt and I. P. Kaminow, “Metal-diffused optical waveguides in LiNbO3,” Appl. Phys. Lett., vol. 25, no. 8, pp. 458-460, Oct. 1974. [25] M. N. Armenise, “Fabrication techniques of lithium niobate waveguides,” IEEE Proc., vol. 135, no. 2, pp. 85-91, Apr. 1988. [26] M. E. Glicksman, Diffusion in Solids: Field Theory, Solid-State Principles, and Applications, Wiley, 2000. [27] W. M. Young, M. M. Fejer, M. J. F. Digonnet, A. F. Marshall, and R. S. Feigelson, “Fabrication, characterization, and index profile modeling of high-damage resistance Zn-diffused waveguides in congruent and MgO:lithium niobate,” J. Lightw. Technol., vol 10, no.9, pp. 1238-1246, Sep. 1992. [28] J. L. Jackal, “Suppression of outdiffusion in titanium diffused LiNbO3,” J. Opt. Commun., vol. 3, pp. 82-85, 1982. [29] B. U. Chen and A. C. Pastor, “Elimination of Li2O outdiffusion waveguide in LiNbO3 and LiTaO3,” Appl. Phys. Lett., vol. 30, no. 11, pp. 570-571, 1977. [30] W. M. Young, M. M. Fejer, M. J. Digonnet, A. F. Marshall, and R. S. Feigelson, “Fabrication , characterization, and index profile modeling of high-damage resistance Zn-diffused waveguides in congruent and MgO:lithium niobate,” J. Lightw. Technol., vol. 10, no. 9, pp.1238-1246, Sep. 1992. [31] P. K. Wei, and W. S. Wang, “Novel TE/TM mode splitter on lithium niobate using nickel indiffusion and proton exchange techniques,” Electon. Lett., vol.30, no. 1, pp. 35-37, 1994. [32] W. M. Young, R. S. Feigelson, M. M. Fejer, M. J. F. Digonnet, and H. J. Shaw, “Photorefractive-damage-resistant Zn-diffused waveguides in MgO: LiNbO3,” Opt. Lett., vol.16, no.13, pp.995-997, 1991. [33] B. Herrerros and G. Lifante, “LiNbO3 optical waveguides by Zn diffusion from vapor phase,” Appl. Phys. Lett., vol.66, no.20, pp.1449-1451, 1995. [34] F. Schiller, B. Herrerros and G. Lifante, “Optical characterization of vapor Zn-diffused waveguides in lithium niobate,” J. Opt. Soc. Am. A, vol.14, no.2, pp.425-429, 1997. [35] 涂瑞清,“長波長鋅擴散式鈮酸鋰光波導元件之研製”,國立台灣大學電機工程學研究所博士論文,2000. [36] 楊志華, “鋅鎳同步擴散式鈮酸鋰光波導之研製,”國立台灣大學電機工程學研究所碩士論文, 1996. [37] 徐文浩, “鋅鎳擴散式鈮酸鋰光波導在可調式極化分離器之應用,” 國立台灣大學光電工程學研究所碩士論文, 2001. [38] 陳卓彥,“藍光鋅鎳擴散式馬赫任德電光調變器之研製” ,國立台灣大學光電工程學研究所碩士論文,2005. [39] 陳松良,“鈮酸鋰藍光方向耦合器之研製”,國立台灣大學光電工程學研究所碩士論文,2005. [40] 黃文宏, “鎵擴散式鈮酸鋰光波導特性之研究,” 國立台灣大學光電工程學研究所博士論文, 2008. [41] S. Fouchet, A. Carenco, C, Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters,” J. Lightw. Technol., vol. 5, pp.700-708, May 1987. [42] 黃新舜, “在伽瑪射線照射鈮酸鋰基板上研製脊形方向耦合器,” 國立台灣大學光電工程學研究所碩士論文, 2011. [43] F. Laurell, J. Webjorn, G. Arvidsson, and J. Holmberg, “ Wet etching of proton-exchanged lithium niobate- a novel processing technique,”J.Lightwave Technol,vol.10,pp.1606-1609,1992. [44] Y. N. Korkishko, V. A. Fedorov, M. P. De Micheli, P. Baldi, K. El Hadi, and A. Leycuras, “Relationships between structural and optical properties of proton-exchanged waveguides on z-cut lithium niobate,” Appl. Opt., vol. 35, no. 36, pp.7056-7060, 1996. [45] E. Y. B.Pun, K. K. Loi, and P. S. Chung “Proton-exchanged optical waveguides in z-cut LiNbO3 using phosphoric acid,” J. Lightw. Technol. Lett., vol 11, no 2, pp. 227-284, 1993. [46] K. Yamamoto, and T. Taniuchi, “Characteristic of pyrophosphoric acid proton-exchanged waveguides in LiNbO3,” Appl. Phys. Lett., vol 70, no.11, pp.6633-6668,1991. [47] 蘇少勇, ”鎳擴散鈮酸鋰脊形光波導馬赫任德調變器之研製”淡江大學電機工程學系碩士班碩士論文,1998. [48] 林佳蔚, “鈮酸鋰側壁延伸式電極大角度可控制極化分離器,” 國立台灣大學電子工程學研究所博士論文, 2009. [49] N. A. Sanford, J. M. Connors, and W. A. Dyes, “Simplified Z-propagation DC bias stable TE-TM mode converter fabricated in Y-cut lithium niobate,” J. Lightw. Technol., vol. 6, no. 6, pp. 898-902, 1988. [50] S. J. Chang, C. L. Tsai, Y. B. Lin, J. F. Liu, and W. S. Wang, ”Improved electro-optic modulator with ridge structure in x-cut LiNbO3,” J. Lightw. Technol., vol. 17, no. 5, pp. 843-847, 1999. [51] Y. K. Wu and W. S. Wang, “Design and fabrication of sidewalls-extended electrode configuration for ridged lithium niobate electrooptical modulator,” J. Lightw. Technol., vol. 26, no. 2, pp. 286-290, Jan. 2008. [52] A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron., vol. 9, no. 9, pp. 919-933, Sep. 1973. [53] B. Glance, “Polarization independent coherent optical receiver,” J. Lightw. Technol., vol. 5, no. 2, pp. 274-276, Feb. 1987. [54] W. J. Minford, R. Depaula, and G. A. Bogert, “Interferometric fiber optical gyroscope using a novel 3*3 integrated optic polarizer/splitter,” in Dig. Conf. Optical Fiber Sensors, pp. 385-392, 1988. [55] W. Warzanakyj, F. Heismann, and R. C. Alferness, “Polarization independent electro-optically tunable narrow-band wavelength filter,” Appl. Phys. Lett., vol. 53, no. 1, pp. 13-15, 1988. [56] M. Kobayashi, H. Terui, and K. Egashira, “An optical TE-TM mode splitter,” Appl. Phys. Lett., vol. 32, no. 5, pp. 300-302, 1978. [57] D. Yap, L. M. Johnson, and G. W. Pratt. Jr., “Passive Ti:LiNbO3 channel waveguide TE-TM mode splitter,” Appl. Phys. Lett., vol. 44, no. 6, pp. 583-585, 1984. [58] R. C. Twu, C. C. Huang, and W. S. Wang, “TE-TM mode splitter with heterogeneously coupled Ti-diffused and Ni-diffused waveguides on Z-cut lithium niobate,” Electron. Lett., vol. 36, no. 3, pp. 220-221, Feb. 2000. [59] H. Yajima, “Dielectric thin-film optical branching waveguide,” Appl. Phys. Lett., vol. 22, no. 12, pp. 647-649, 1973. [60] W. K. Burns and A. F. Milton, “Mode conversion in planar-dielectric separating waveguides,” IEEE J. Quantum Electron., vol. 11, no. 1, pp. 32-39, Jan. 1975. [61] M. Masuda and G. L. Yip, “An optical TE/TM mode splitter using a LiNbO3 branching waveguide,” Appl. Phys. Lett., vol. 37, no. 1, pp. 20-22, 1980. [62] J. J. G. M. van der Tol and J. H. Laarhuis, “A polarization splitter on LiNbO3 using only titanium diffusion,” J. Lightw. Technol., vol. 9, no. 7, pp. 879-886, Jul. 1991. [63] N. Goto and G. L. Yip, “A TE-TM mode splitter in LiNbO3 by proton exchange and Ti diffusion,” J. Lightw. Technol., vol. 7, no. 10, pp. 1567-1574, Oct. 1989. [64] J. J. G. M.. van der Tol and Laarhuis, J. H., “Measurement of mode splitting in asymmetric Y-junctions,” IEEE Photon. Technol. Lett., vol. 4, no.5, pp. 454-457, May 2002. [65] 陳祥麟,“鋅鎳及鎵擴散式鈮酸鋰光波導極化分離器之研製”,國立台灣大學光電工程學研究所碩士論文,2009. [66] INRAD data sheet on lithium niobate, page 1of 5, Available:http://www.inrad.com/pdf/Inrad_datasheet_LNB.pdf. [67] G. P. Agrawal, Fiber-Optic Communication System, 3rd ed , John Wiley & Sons, Inc., pp. 117, 2002. [68] H. Kamchouchi and A. Zaky, “A direct method for the edge capacitance of thick electrodes,” J. Phys. D:Appl. Phys., vol. 8, pp. 1365-1371, 1975. [69] L. M. Augustin, J. J. G. M. van der Tol, R. Hanfoug, W. J. M. de Laat, M. J. E. van de Moosdijk, P. W. L. van Dijk, Y. S. Oei, and M. K. Smit, “A single etch-step fabrication-tolerant polarization splitter,” J. Lightw. Technol., vol. 25, no. 3, pp. 740-746, Mar. 2007. [70] 康家興,“可調式鋅鎳共同擴散及鎵擴散式鈮酸鋰光波導極化分離器之研製”,國立台灣大學光電工程學研究所碩士論文,2010. [71] J. J. Su and W. S. Wang, “Novel coherently coupled multisectional bending optical waveguide,” IEEE Photon. Technol. Lett., vol. 14, no 8, pp.1112-1114, Aug. 2002. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65219 | - |
dc.description.abstract | 本論文利用鋅鎳鎵共同擴散法在鈮酸鋰基板上製作可調式極化分離器。元件的基本架構為一非對稱Y形分岔結構,輸入波導為一鋅鎳共同擴散式波導,其特點是製作一脊形結構上,並搭配指狀電極。在輸出部分,直分支波導亦為鋅鎳共同擴散式波導,但利用不同厚度使其僅導通橫電模態(水平極化方向);彎曲分支輸出波導則為僅導通橫磁模態(垂直極化方向)之鎵擴散式波導。
先前已發表極化分離器之製程均需要兩次以上的高溫製程,本論文所提出之製程僅需一次高溫擴散,可有效節省製程時間,簡化製程步驟。 在元件應用上,實驗結果顯示在操作波長為1.55μm之環境下,橫電模態的訊熄比為27.8dB,橫磁模態訊熄比為24.4dB,遠高於實際應用之需求(13dB)。 在調變效果上,本論文利用指狀電極之設計,比較在相同脊形深度以及電極寬度下,有無側壁延伸電極之調變電壓差異,證實在相同調變率下側壁延伸式電極成功降低了41%的電壓。 最後本論文進一步應用側壁延伸電極於6μm高之脊形元件上,在外加電壓47V時可達成兩極化模態的完全轉換,與之前已發表結果比較降低12.9%之調變電壓。 | zh_TW |
dc.description.abstract | Controllable polarization splitters with Zn-Ni diffusion and Ga diffusion optical waveguides are successfully fabricated on Z-cut LiNbO3 substrates. The basic structure of the proposed polarization splitter is an asymmetrical Y-branch. Both TE and TM modes are supported in the input waveguide branch fabricated by Zn-Ni diffusion. In particular, the input waveguide branch is fabricated on a ridge structure with finger-type electrodes to modulate the polarizations. In the output section, only TE modes are supported in the straight waveguide fabricated by another Zn-Ni diffusion, whereas only TM modes are supported in the bent waveguide fabricated by Ga diffusion.
Though three kinds of metal with various thicknesses are deposited, only one diffusion step is needed, instead of two or more diffusion steps as used in previous works. Thus, the fabrication process can be greatly simplified. Experimental results show, the extinction ratios are 27.8dB and 24.4dB for the TE and TM modes at 1.55μm wavelengh, which are good enough for practical applications (13dB). To study the of tunabilities of splitters, finger type electrodes are designed and fabricated in this work, sidewall-extended and conventional electrodes with the same ridge depth and electrodes gap are compared. Experimental results show the driving voltage of splitter with sidewall-extended finger type electrodes is 41% reduced, less than those without. Finally, polarization splitters on ridges of the depth 6μm with sidewall-extended electrodes are fabricated for demonstration. Measured results show polarization states can be completely converted by an applied voltage of 47V, which is 12.9% less than those reported. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T23:30:36Z (GMT). No. of bitstreams: 1 ntu-101-R99941032-1.pdf: 5513907 bytes, checksum: da453087155d1b00caf50cd0667c8067 (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 第一章 緒論 1
1-1 極化分離器簡介 1 1-1.1 研究背景 1 1-1.2 極化控制與極化分離 1 1-2 鈮酸鋰晶體基本特性 4 1-3 研究動機 7 1-4 內容簡介 8 第二章 鈮酸鋰波導簡介 9 2-1 光波導分類 9 2-2 鈦擴散式鈮酸鋰光波導簡介 12 2-3 鎳擴散式鈮酸鋰光波導簡介 13 2-4 鋅擴散式鈮酸鋰光波導簡介 14 2-5 鋅鎳擴散式鈮酸鋰光波導 15 2-6 鎵擴散式鈮酸鋰光波導 15 2-7 各式常用鈮酸鋰光波導之比較 16 第三章 脊形結構與側壁延伸電極 18 3-1 脊形結構簡介 18 3-2 質子交換蝕刻行為 19 3-3 脊形外觀與其實驗結果討論 25 3-4 側壁延伸電極模擬結果與討論 28 第四章 鈮酸鋰光波導極化分離器 34 4-1 方向耦合式極化分離器 35 4-2 非對稱Y分岔式極化分離器 35 4-3 模態揀選效應 38 4-4 鈮酸鋰光波導極化分離器之實作 41 第五章 元件整合設計與製作 44 5-1 脊形結構上光波導製作 44 5-1.1 晶片清洗 45 5-1.2 光微影術 46 5-1.3薄膜製程 47 5-1.4 掀離法 49 5-1.5 高溫擴散 50 5-1.6 研磨拋光 51 5-2 一次擴散式極化分離器光波導製程參數 51 5-2.1 鋅鎳共同擴散式鈮酸鋰光波導製程參數 52 5-2.2 鎵擴散式鈮酸鋰光波導製程參數 55 5-3電極設計參數與製作 56 5-3.1 電極設計參數 56 5-3.2 電極蝕刻製程 58 5-4 側壁延伸式電極極化分離器製作流程及元件架構圖 61 5-5 量測系統 63 第六章 實驗結果分析與討論 65 6-1 鋅鎳鎵共同擴散極化分離器訊熄比 65 6-2 側壁延伸電極對極化模態轉換效率之影響 66 6-3 脊形高度對側壁延伸電極轉換效率之影響 71 第七章 結論與未來展望 75 7-1 結論 75 7-2 未來展望 76 參考文獻 78 中英文名詞對照表 86 | |
dc.language.iso | zh-TW | |
dc.title | 具有鋅鎳鎵共同擴散波導及側壁延伸電極之鈮酸鋰極化分離器 | zh_TW |
dc.title | Lithium Niobate Polarization Splitter with Zinc-Nickel-Gallium Codiffused Waveguide and Sidewall Extended Electrodes | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 彭隆瀚,蔡宛卲,王子建 | |
dc.subject.keyword | 鈮酸鋰,積體光學,極化分離器, | zh_TW |
dc.subject.keyword | Lithium Niobate,Integrated Optics,Polarization Splitter, | en |
dc.relation.page | 89 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2012-07-30 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
顯示於系所單位: | 光電工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf 目前未授權公開取用 | 5.38 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。