請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65201完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 潘建源 | |
| dc.contributor.author | Yi-Fan Chen | en |
| dc.contributor.author | 陳怡帆 | zh_TW |
| dc.date.accessioned | 2021-06-16T23:29:39Z | - |
| dc.date.available | 2014-08-01 | |
| dc.date.copyright | 2012-08-01 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-07-30 | |
| dc.identifier.citation | Aldea, M., Jun, K., Shin, H.S., Andres-Mateos, E., Solis-Garrido, L.M., Montiel, C., Garcia, A.G., and Albillos, A. (2002). A perforated patch-clamp study of calcium currents and exocytosis in chromaffin cells of wild-type and alpha(1A) knockout mice. J Neurochem 81, 911-921.
Amici, M., Doherty, A., Jo, J., Jane, D., Cho, K., Collingridge, G., and Dargan, S. (2009). Neuronal calcium sensors and synaptic plasticity. Biochem Soc Trans 37, 1359-1363. Aravind, P., Chandra, K., Reddy, P.P., Jeromin, A., Chary, K.V., and Sharma, Y. (2008). Regulatory and structural EF-hand motifs of neuronal calcium sensor-1: Mg 2+ modulates Ca 2+ binding, Ca 2+ -induced conformational changes, and equilibrium unfolding transitions. J Mol Biol 376, 1100-1115. Baker, P.F., and Knight, D.E. (1978). Calcium-dependent exocytosis in bovine adrenal medullary cells with leaky plasma membranes. Nature 276, 620-622. Berridge, M.J. (1998). Neuronal calcium signaling. Neuron 21, 13-26. Berridge, M.J. (2002). The endoplasmic reticulum: a multifunctional signaling organelle. Cell Calcium 32, 235-249. Burgoyne, R.D., and Weiss, J.L. (2001). The neuronal calcium sensor family of Ca2+-binding proteins. Biochem J 353, 1-12. Dason, J.S., Romero-Pozuelo, J., Marin, L., Iyengar, B.G., Klose, M.K., Ferrus, A., and Atwood, H.L. (2009). Frequenin/NCS-1 and the Ca2+-channel alpha1-subunit co-regulate synaptic transmission and nerve-terminal growth. J Cell Sci 122, 4109-4121. de Barry, J., Janoshazi, A., Dupont, J.L., Procksch, O., Chasserot-Golaz, S., Jeromin, A., and Vitale, N. (2006). Functional implication of neuronal calcium sensor-1 and phosphoinositol 4-kinase-beta interaction in regulated exocytosis of PC12 cells. J Biol Chem 281, 18098-18111. Gambino, F., Pavlowsky, A., Begle, A., Dupont, J.L., Bahi, N., Courjaret, R., Gardette, R., Hadjkacem, H., Skala, H., Poulain, B., et al. (2007). IL1-receptor accessory protein-like 1 (IL1RAPL1), a protein involved in cognitive functions, regulates N-type Ca2+-channel and neurite elongation. Proc Natl Acad Sci U S A 104, 9063-9068. Greener, T., Zhao, X., Nojima, H., Eisenberg, E., and Greene, L.E. (2000). Role of cyclin G-associated kinase in uncoating clathrin-coated vesicles from non-neuronal cells. J Biol Chem 275, 1365-1370. Greka, A., Navarro, B., Oancea, E., Duggan, A., and Clapham, D.E. (2003). TRPC5 is a regulator of hippocampal neurite length and growth cone morphology. Nat Neurosci 6, 837-845. Handley, M.T., Lian, L.Y., Haynes, L.P., and Burgoyne, R.D. (2010). Structural and functional deficits in a neuronal calcium sensor-1 mutant identified in a case of autistic spectrum disorder. PLoS One 5, e10534. Henkel, A.W., Meiri, H., Horstmann, H., Lindau, M., and Almers, W. (2000). Rhythmic opening and closing of vesicles during constitutive exo- and endocytosis in chromaffin cells. Embo J 19, 84-93. Hirst, J., Sahlender, D.A., Li, S., Lubben, N.B., Borner, G.H., and Robinson, M.S. (2008). Auxilin depletion causes self-assembly of clathrin into membraneless cages in vivo. Traffic 9, 1354-1371. Kabbani, N., Negyessy, L., Lin, R., Goldman-Rakic, P., and Levenson, R. (2002). Interaction with neuronal calcium sensor NCS-1 mediates desensitization of the D2 dopamine receptor. J Neurosci 22, 8476-8486. Konur, S., and Ghosh, A. (2005). Calcium signaling and the control of dendritic development. Neuron 46, 401-405. Lemmon, S.K. (2001). Clathrin uncoating: Auxilin comes to life. Curr Biol 11, R49-52. Ma, Y., Greener, T., Pacold, M.E., Kaushal, S., Greene, L.E., and Eisenberg, E. (2002). Identification of domain required for catalytic activity of auxilin in supporting clathrin uncoating by Hsc70. J Biol Chem 277, 49267-49274. Macia, E., Ehrlich, M., Massol, R., Boucrot, E., Brunner, C., and Kirchhausen, T. (2006). Dynasore, a cell-permeable inhibitor of dynamin. Dev Cell 10, 839-850. Mansvelder, H.D., and Kits, K.S. (1998). The relation of exocytosis and rapid endocytosis to calcium entry evoked by short repetitive depolarizing pulses in rat melanotropic cells. J Neurosci 18, 81-92. Martin, T.F. (2001). PI(4,5)P(2) regulation of surface membrane traffic. Curr Opin Cell Biol 13, 493-499. McFerran, B.W., Graham, M.E., and Burgoyne, R.D. (1998). Neuronal Ca2+ sensor 1, the mammalian homologue of frequenin, is expressed in chromaffin and PC12 cells and regulates neurosecretion from dense-core granules. J Biol Chem 273, 22768-22772. Miklavc, P., and Frick, M. (2011). Vesicular calcium channels as regulators of the exocytotic post-fusion phase. Commun Integr Biol 4, 796-798. Moncrief, N.D., Kretsinger, R.H., and Goodman, M. (1990). Evolution of EF-hand calcium-modulated proteins. I. Relationships based on amino acid sequences. J Mol Evol 30, 522-562. Newmyer, S.L., Christensen, A., and Sever, S. (2003). Auxilin-dynamin interactions link the uncoating ATPase chaperone machinery with vesicle formation. Dev Cell 4, 929-940. Pan, C.Y., Jeromin, A., Lundstrom, K., Yoo, S.H., Roder, J., and Fox, A.P. (2002). Alterations in exocytosis induced by neuronal Ca2+ sensor-1 in bovine chromaffin cells. J Neurosci 22, 2427-2433. Pishvaee, B., Costaguta, G., Yeung, B.G., Ryazantsev, S., Greener, T., Greene, L.E., Eisenberg, E., McCaffery, J.M., and Payne, G.S. (2000). A yeast DNA J protein required for uncoating of clathrin-coated vesicles in vivo. Nat Cell Biol 2, 958-963. Pongs, O., Lindemeier, J., Zhu, X.R., Theil, T., Engelkamp, D., Krah-Jentgens, I., Lambrecht, H.G., Koch, K.W., Schwemer, J., Rivosecchi, R., et al. (1993). Frequenin--a novel calcium-binding protein that modulates synaptic efficacy in the Drosophila nervous system. Neuron 11, 15-28. Rizzuto, R., Duchen, M.R., and Pozzan, T. (2004). Flirting in little space: the ER/mitochondria Ca2+ liaison. Sci STKE 2004, re1. Sever, S., Muhlberg, A.B., and Schmid, S.L. (1999). Impairment of dynamin's GAP domain stimulates receptor-mediated endocytosis. Nature 398, 481-486. Sudhof, T.C. (2004). The synaptic vesicle cycle. Annu Rev Neurosci 27, 509-547. Tsai, C.C., Lin, C.L., Wang, T.L., Chou, A.C., Chou, M.Y., Lee, C.H., Peng, I.W., Liao, J.H., Chen, Y.T., and Pan, C.Y. (2009). Dynasore inhibits rapid endocytosis in bovine chromaffin cells. Am J Physiol Cell Physiol 297, C397-406. Weiss, J.L., Archer, D.A., and Burgoyne, R.D. (2000). Neuronal Ca2+ sensor-1/frequenin functions in an autocrine pathway regulating Ca2+ channels in bovine adrenal chromaffin cells. J Biol Chem 275, 40082-40087. Weiss, J.L., and Burgoyne, R.D. (2001). Voltage-independent inhibition of P/Q-type Ca2+ channels in adrenal chromaffin cells via a neuronal Ca2+ sensor-1-dependent pathway involves Src family tyrosine kinase. J Biol Chem 276, 44804-44811. Weiss, J.L., Hui, H., and Burgoyne, R.D. (2010). Neuronal calcium sensor-1 regulation of calcium channels, secretion, and neuronal outgrowth. Cell Mol Neurobiol 30, 1283-1292. Xing, Y., Bocking, T., Wolf, M., Grigorieff, N., Kirchhausen, T., and Harrison, S.C. (2010). Structure of clathrin coat with bound Hsc70 and auxilin: mechanism of Hsc70-facilitated disassembly. Embo J 29, 655-665. Yim, Y.I., Sun, T., Wu, L.G., Raimondi, A., De Camilli, P., Eisenberg, E., and Greene, L.E. (2010). Endocytosis and clathrin-uncoating defects at synapses of auxilin knockout mice. Proc Natl Acad Sci U S A 107, 4412-4417. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/65201 | - |
| dc.description.abstract | 鈣離子訊號在神經及神經內分泌細胞的神經傳導物質釋放上扮演很重要的角色。鈣離子的流入誘發許多以鈣離子結合蛋白所調控的訊號傳導路徑。Neuronal calcium sensor-1 (NCS-1),含有四個能與鈣離子結合的EF-hand motifs,且已知可促進果蠅的突觸傳導。本實驗室之前的研究以yeast-two-hybrid screening發現NCS-1會與Auxilin-1的C端結合。Auxilin-1是幫助網格蛋白從胞吞作用進入的小泡上離開的一個蛋白質。為了解NCS-1及Auxilin-1的功能,以全細胞膜電鉗技術測量腎上腺髓質細胞的膜電容。電容值代表細胞表面積大小並可反映胞吞胞吐作用的活性。在三次連續刺激下控制組的胞吐作用程度並無明顯改變。而細胞表現NCS-1及NCS-1R102Q三次刺激平均之胞吐程度與控制組比較分別被抑制到58.58 %及 34.31 %。相似的抑制作用在Auxilin-1也被觀察到 (36.72 %)。 此外,NCS-1R102Q的胞吞速率則顯著被抑制。為確認其突觸傳導的影響,以Glutamate刺激神經細胞利用Ca2+ imaging的技術觀察細胞反應,顯示NCS-1下游細胞螢光強度有顯著的減弱。結果指出,NCS-1與鈣離子結合可幫助突觸小泡的釋放,然而,過度表現NCS-1的細胞可能因競爭胞內鈣離子的緣故導致胞吐作用被抑制。表現Auxilin-1的細胞則可能使突觸小泡聚積而導致胞吐作用被抑制的影響。 | zh_TW |
| dc.description.abstract | Calcium signaling plays an important role on neurotransmitter release in nervous and neuroendocrine cells. Calcium influx triggers many signal transduction pathways mediated by various calcium binding proteins. Neuronal calcium sensor-1 (NCS-1) contains four EF-hand calcium binding motifs, and is known to enhance the synaptic transmission in Drosophila. In our lab, by yeast-two-hybrid screening with NCS-1 as the bait, a rat cDNA clone of auxilin-1 was identified. Auxilin-1 is a protein involved in uncoating the clathrin from the clathrin-coated vesicle. To characterize the functions of NCS-1 and Auxilin-1, bovine chromaffin cells were patch-clamped at perforated whole-cell mode and the membrane capacitance was recorded. The capacitance value is proportional to the surface area of cell and can be used to reflect the activity of exo-endocytosis. During three repetitive stimulations, the exocytosis level was not changed in control cells. For cell expressing NCS-1 or NCS-1R102Q, the average exocytosis levels at three stimulations were significantly inhibited to 58.58 % and 34.31 % comparing to the control respectively. Similar inhibitory effect was also observed in cells expressing Auxilin-1 (36.72 %). The endocytosis rate was significantly inhibited in cells expressing NCS-1R102Q. To verify their effects on synaptic transmission, cultured neurons were stimulated by uncaging glutamate and the responses were monitored by Ca2+ imaging. Cells expressing NCS-1 or NCS-1R102Q had a significant effect on reducing the Ca2+ responses in downstream neurons. These results suggest that NCS-1 binding with calcium helps synaptic vesicle release. But cells overexpressing NCS-1 maybe compete the intracellular calcium leading to exocytosis inhibition. And Auxilin-1 may cause accumulation of clathrin-coated vesicles resulting in the similar inhibitory effect. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T23:29:39Z (GMT). No. of bitstreams: 1 ntu-101-R99b41002-1.pdf: 1945276 bytes, checksum: 0e80a4e7d6a528eef7254f83e87c6a42 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | Catalog
Acknowledgement i 中文摘要 ii 英文摘要 iii 1. Introduction 1 1.1 Synaptic vesicle cycle 1 1.2 Roles of Ca2+ during exocytosis 2 1.3 NCS-1 5 1.4 Clathrin -mediated endocytosis 9 1.5 Role of Auxilin on endocytosis 10 2. Aims 13 3.1 Chemicals 14 3.2 Primary bovine chromaffin cell culture 15 3.3 Primary cortical neuron culture 15 3.4 NCS-1 plasmid construction 16 3.5 Calcium phosphate transfection 18 3.6 Electrophysiological recording - perforated whole cell patch clamp 18 3.7 Immunofluorescence staining 19 3.8 Calcium image of neuronal cell 20 3.9 Data analysis 22 4. Results 23 4.1 The localization of endogenous NCS-1 and Auxilin-1 23 4.2 No significant differences in cell size in cells overexpressing NCS-1 and Auxilin-1 23 4.3 NCS-1 and NCS-1R102Q cause calcium influx rundown 24 4.4 Auxilin-1 decreases the calcium influx 26 4.5 NCS-1 and NCS-1R102Q show a trend in inhibits evoked exocytosis 27 4.6 Auxilin-1 inhibits the exocytosis 28 4.7 NCS-1R102Q slow down the rate of endocytosis 29 4.8 NCS-1 and NCS-1 R102Q reduced the Ca2+ response in downstream neurons 30 4.9 The localization of endogenous NCS-1 and Auxilin-1 in endocytosis blocked cell 32 5. Discussion 34 5.1 The distribution of NCS-1 and Auxilin-1 34 5.2 The differences in cell sizes 35 5.3 NCS-1 and NCS-1R102Q significantly reduce the Ca2+ influx 35 5.4 NCS-1 and NCS-1R102Q inhibit the evoked exocytosis 36 5.5 Auxilin-1 reduce both the Ca2+ influx and exocytosis 38 5.6 NCS-1R102Q decreases the rate of endocytosis 39 5.7 NCS-1 and NCS-1 R102Q reduce the Ca2+ response in downstream neurons 39 5.8 NCS-1 and Auxilin-1 interact with each other 40 6. Conclusion 42 7. References 43 Scheme………………………………………………………………………………….49 Tables……………………………………………………………………………...……51 Figures……………………………………………………………………………….…53 | |
| dc.language.iso | en | |
| dc.subject | 腎上腺髓質細胞 | zh_TW |
| dc.subject | NCS-1 | zh_TW |
| dc.subject | Auxilin-1 | zh_TW |
| dc.subject | 突觸小泡循環 | zh_TW |
| dc.subject | 胞吞胞吐作用 | zh_TW |
| dc.subject | chromaffin cell | en |
| dc.subject | synaptic vesicle cycle | en |
| dc.subject | Auxilin-1 | en |
| dc.subject | exo/endocytosi | en |
| dc.subject | NCS-1 | en |
| dc.title | NCS-1及Auxilin-1對神經傳導的影響 | zh_TW |
| dc.title | Effects of NCS-1 and Auxilin-1 on Neurotransmission | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林崇智,姚季光,王致恬 | |
| dc.subject.keyword | Auxilin-1,腎上腺髓質細胞,胞吞胞吐作用,NCS-1,突觸小泡循環, | zh_TW |
| dc.subject.keyword | Auxilin-1,chromaffin cell,exo/endocytosi,NCS-1,synaptic vesicle cycle, | en |
| dc.relation.page | 63 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2012-07-30 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 動物學研究所 | zh_TW |
| 顯示於系所單位: | 動物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 1.9 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
